Introductory algebraic number theory:
Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provide...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2004
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvii, 428 pages) |
ISBN: | 9780511791260 |
DOI: | 10.1017/CBO9780511791260 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942860 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780511791260 |c Online |9 978-0-511-79126-0 | ||
024 | 7 | |a 10.1017/CBO9780511791260 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511791260 | ||
035 | |a (OCoLC)704547000 | ||
035 | |a (DE-599)BVBBV043942860 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.74 |2 21 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Alaca, Şaban |d 1964- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introductory algebraic number theory |c Şaban Alaca, Kenneth S. Williams |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2004 | |
300 | |a 1 online resource (xvii, 428 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations | |
520 | |a Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text | ||
650 | 4 | |a Algebraic number theory / Textbooks | |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Williams, Kenneth S. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-54011-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-83250-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511791260 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351830 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511791260 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511791260 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886230679552 |
---|---|
any_adam_object | |
author | Alaca, Şaban 1964- |
author_facet | Alaca, Şaban 1964- |
author_role | aut |
author_sort | Alaca, Şaban 1964- |
author_variant | ş a şa |
building | Verbundindex |
bvnumber | BV043942860 |
classification_rvk | SK 180 |
collection | ZDB-20-CBO |
contents | Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations |
ctrlnum | (ZDB-20-CBO)CR9780511791260 (OCoLC)704547000 (DE-599)BVBBV043942860 |
dewey-full | 512/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.74 |
dewey-search | 512/.74 |
dewey-sort | 3512 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511791260 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03403nmm a2200505zc 4500</leader><controlfield tag="001">BV043942860</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511791260</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-79126-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511791260</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511791260</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704547000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942860</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.74</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alaca, Şaban</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introductory algebraic number theory</subfield><subfield code="c">Şaban Alaca, Kenneth S. Williams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 428 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic number theory / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Williams, Kenneth S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-54011-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-83250-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511791260</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351830</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791260</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511791260</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043942860 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511791260 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351830 |
oclc_num | 704547000 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvii, 428 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Alaca, Şaban 1964- Verfasser aut Introductory algebraic number theory Şaban Alaca, Kenneth S. Williams Cambridge Cambridge University Press 2004 1 online resource (xvii, 428 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations Algebraic number theory is a subject which came into being through the attempts of mathematicians to try to prove Fermat's last theorem and which now has a wealth of applications to diophantine equations, cryptography, factoring, primality testing and public-key cryptosystems. This book provides an introduction to the subject suitable for senior undergraduates and beginning graduate students in mathematics. The material is presented in a straightforward, clear and elementary fashion, and the approach is hands on, with an explicit computational flavour. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested reading and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are over 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text Algebraic number theory / Textbooks Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Algebraische Zahlentheorie (DE-588)4001170-7 s 2\p DE-604 Williams, Kenneth S. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-54011-7 Erscheint auch als Druckausgabe 978-0-521-83250-2 https://doi.org/10.1017/CBO9780511791260 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alaca, Şaban 1964- Introductory algebraic number theory Integral domains -- Euclidean domains -- Noetherian domains -- Elements integral over a domain -- Algebraic extensions of a field -- Algebraic number fields -- Integral bases -- Dedekind domains -- Norms of ideals -- Decomposing primes in a number field -- Units in real quadratic fields -- The ideal class group -- Dirichlet's unit theorem -- Applications to diophantine equations Algebraic number theory / Textbooks Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
subject_GND | (DE-588)4001170-7 (DE-588)4151278-9 |
title | Introductory algebraic number theory |
title_auth | Introductory algebraic number theory |
title_exact_search | Introductory algebraic number theory |
title_full | Introductory algebraic number theory Şaban Alaca, Kenneth S. Williams |
title_fullStr | Introductory algebraic number theory Şaban Alaca, Kenneth S. Williams |
title_full_unstemmed | Introductory algebraic number theory Şaban Alaca, Kenneth S. Williams |
title_short | Introductory algebraic number theory |
title_sort | introductory algebraic number theory |
topic | Algebraic number theory / Textbooks Algebraische Zahlentheorie (DE-588)4001170-7 gnd |
topic_facet | Algebraic number theory / Textbooks Algebraische Zahlentheorie Einführung |
url | https://doi.org/10.1017/CBO9780511791260 |
work_keys_str_mv | AT alacasaban introductoryalgebraicnumbertheory AT williamskenneths introductoryalgebraicnumbertheory |