Solving ODEs with MATLAB:
This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial va...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 263 pages) |
ISBN: | 9780511615542 |
DOI: | 10.1017/CBO9780511615542 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942774 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511615542 |c Online |9 978-0-511-61554-2 | ||
024 | 7 | |a 10.1017/CBO9780511615542 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511615542 | ||
035 | |a (OCoLC)850830000 | ||
035 | |a (DE-599)BVBBV043942774 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.35 |2 21 | |
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
100 | 1 | |a Shampine, Lawrence F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solving ODEs with MATLAB |c L.F. Shampine, I. Gladwell, S. Thompson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 online resource (viii, 263 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples | ||
630 | 0 | 4 | |a MATLAB. |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Differential equations / Numerical solutions / Data processing | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangswertproblem |0 (DE-588)4001991-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |D s |
689 | 0 | 1 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Anfangswertproblem |0 (DE-588)4001991-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
700 | 1 | |a Gladwell, I. |e Sonstige |4 oth | |
700 | 1 | |a Thompson, S. |d 1948- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-53094-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-82404-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511615542 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351744 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511615542 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511615542 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886051373056 |
---|---|
any_adam_object | |
author | Shampine, Lawrence F. |
author_facet | Shampine, Lawrence F. |
author_role | aut |
author_sort | Shampine, Lawrence F. |
author_variant | l f s lf lfs |
building | Verbundindex |
bvnumber | BV043942774 |
classification_rvk | ST 601 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511615542 (OCoLC)850830000 (DE-599)BVBBV043942774 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
doi_str_mv | 10.1017/CBO9780511615542 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04220nmm a2200745zc 4500</leader><controlfield tag="001">BV043942774</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511615542</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-61554-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511615542</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511615542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850830000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942774</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shampine, Lawrence F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving ODEs with MATLAB</subfield><subfield code="c">L.F. Shampine, I. Gladwell, S. Thompson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 263 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples</subfield></datafield><datafield tag="630" ind1="0" ind2="4"><subfield code="a">MATLAB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations / Numerical solutions / Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gladwell, I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thompson, S.</subfield><subfield code="d">1948-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-53094-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-82404-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511615542</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351744</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511615542</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511615542</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942774 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511615542 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351744 |
oclc_num | 850830000 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 263 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Shampine, Lawrence F. Verfasser aut Solving ODEs with MATLAB L.F. Shampine, I. Gladwell, S. Thompson Cambridge Cambridge University Press 2003 1 online resource (viii, 263 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples MATLAB. Datenverarbeitung Differential equations / Numerical solutions / Data processing Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Grenzwertberechnung (DE-588)4158161-1 gnd rswk-swf MATLAB (DE-588)4329066-8 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Digitale Signalverarbeitung (DE-588)4113314-6 gnd rswk-swf Anfangswertproblem (DE-588)4001991-3 gnd rswk-swf Digitale Signalverarbeitung (DE-588)4113314-6 s Differentialgleichung (DE-588)4012249-9 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 MATLAB (DE-588)4329066-8 s 2\p DE-604 Anfangswertproblem (DE-588)4001991-3 s 3\p DE-604 Lösung Mathematik (DE-588)4120678-2 s 4\p DE-604 Grenzwertberechnung (DE-588)4158161-1 s 5\p DE-604 Gladwell, I. Sonstige oth Thompson, S. 1948- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-53094-1 Erscheint auch als Druckausgabe 978-0-521-82404-0 https://doi.org/10.1017/CBO9780511615542 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shampine, Lawrence F. Solving ODEs with MATLAB MATLAB. Datenverarbeitung Differential equations / Numerical solutions / Data processing Numerisches Verfahren (DE-588)4128130-5 gnd Differentialgleichung (DE-588)4012249-9 gnd Grenzwertberechnung (DE-588)4158161-1 gnd MATLAB (DE-588)4329066-8 gnd Lösung Mathematik (DE-588)4120678-2 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Anfangswertproblem (DE-588)4001991-3 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4012249-9 (DE-588)4158161-1 (DE-588)4329066-8 (DE-588)4120678-2 (DE-588)4113314-6 (DE-588)4001991-3 |
title | Solving ODEs with MATLAB |
title_auth | Solving ODEs with MATLAB |
title_exact_search | Solving ODEs with MATLAB |
title_full | Solving ODEs with MATLAB L.F. Shampine, I. Gladwell, S. Thompson |
title_fullStr | Solving ODEs with MATLAB L.F. Shampine, I. Gladwell, S. Thompson |
title_full_unstemmed | Solving ODEs with MATLAB L.F. Shampine, I. Gladwell, S. Thompson |
title_short | Solving ODEs with MATLAB |
title_sort | solving odes with matlab |
topic | MATLAB. Datenverarbeitung Differential equations / Numerical solutions / Data processing Numerisches Verfahren (DE-588)4128130-5 gnd Differentialgleichung (DE-588)4012249-9 gnd Grenzwertberechnung (DE-588)4158161-1 gnd MATLAB (DE-588)4329066-8 gnd Lösung Mathematik (DE-588)4120678-2 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Anfangswertproblem (DE-588)4001991-3 gnd |
topic_facet | MATLAB. Datenverarbeitung Differential equations / Numerical solutions / Data processing Numerisches Verfahren Differentialgleichung Grenzwertberechnung MATLAB Lösung Mathematik Digitale Signalverarbeitung Anfangswertproblem |
url | https://doi.org/10.1017/CBO9780511615542 |
work_keys_str_mv | AT shampinelawrencef solvingodeswithmatlab AT gladwelli solvingodeswithmatlab AT thompsons solvingodeswithmatlab |