How to fold it: the mathematics of linkages, origami, and polyhedra
What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2011
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's website, http://www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 177 pages) |
ISBN: | 9780511975028 |
DOI: | 10.1017/CBO9780511975028 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942764 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780511975028 |c Online |9 978-0-511-97502-8 | ||
024 | 7 | |a 10.1017/CBO9780511975028 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511975028 | ||
035 | |a (OCoLC)859642778 | ||
035 | |a (DE-599)BVBBV043942764 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/5 |2 22 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a O'Rourke, Joseph |e Verfasser |4 aut | |
245 | 1 | 0 | |a How to fold it |b the mathematics of linkages, origami, and polyhedra |c Joseph O'Rourke |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2011 | |
300 | |a 1 online resource (xii, 177 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: Part I. Linkages: 1. Robot arms; 2. Straight-line linkages and the pantograph; 3. Protein folding and pop-up cards; Part II. Origami: 4. Flat vertex folds; 5. Fold and one-cut; 6. The shopping bag theorem; Part III. Polyhedra: 7. Durer's problem: edge unfolding; 8. Unfolding orthogonal polyhedra; 9. Folding polygons to convex polyhedra; 10. Further reading; 11. Glossary; 12. Answers to exercises; 13. Permissions and acknowledgments | |
520 | |a What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's website, http://www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Liaison theory (Mathematics) | |
650 | 4 | |a Origami / Mathematics | |
650 | 4 | |a Polyhedra | |
650 | 4 | |a Protein folding | |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faltungsalgorithmus |0 (DE-588)4646476-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Origami |0 (DE-588)4115467-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polyeder |0 (DE-588)4132101-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | 1 | |a Origami |0 (DE-588)4115467-8 |D s |
689 | 0 | 2 | |a Polyeder |0 (DE-588)4132101-7 |D s |
689 | 0 | 3 | |a Faltungsalgorithmus |0 (DE-588)4646476-1 |D s |
689 | 0 | 4 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-14547-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-76735-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511975028 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351734 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511975028 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511975028 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176886025158656 |
---|---|
any_adam_object | |
author | O'Rourke, Joseph |
author_facet | O'Rourke, Joseph |
author_role | aut |
author_sort | O'Rourke, Joseph |
author_variant | j o jo |
building | Verbundindex |
bvnumber | BV043942764 |
classification_rvk | SK 380 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: Part I. Linkages: 1. Robot arms; 2. Straight-line linkages and the pantograph; 3. Protein folding and pop-up cards; Part II. Origami: 4. Flat vertex folds; 5. Fold and one-cut; 6. The shopping bag theorem; Part III. Polyhedra: 7. Durer's problem: edge unfolding; 8. Unfolding orthogonal polyhedra; 9. Folding polygons to convex polyhedra; 10. Further reading; 11. Glossary; 12. Answers to exercises; 13. Permissions and acknowledgments |
ctrlnum | (ZDB-20-CBO)CR9780511975028 (OCoLC)859642778 (DE-599)BVBBV043942764 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511975028 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03791nmm a2200613zc 4500</leader><controlfield tag="001">BV043942764</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511975028</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-97502-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511975028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511975028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859642778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942764</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Rourke, Joseph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How to fold it</subfield><subfield code="b">the mathematics of linkages, origami, and polyhedra</subfield><subfield code="c">Joseph O'Rourke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 177 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: Part I. Linkages: 1. Robot arms; 2. Straight-line linkages and the pantograph; 3. Protein folding and pop-up cards; Part II. Origami: 4. Flat vertex folds; 5. Fold and one-cut; 6. The shopping bag theorem; Part III. Polyhedra: 7. Durer's problem: edge unfolding; 8. Unfolding orthogonal polyhedra; 9. Folding polygons to convex polyhedra; 10. Further reading; 11. Glossary; 12. Answers to exercises; 13. Permissions and acknowledgments</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's website, http://www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liaison theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Origami / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyhedra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein folding</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faltungsalgorithmus</subfield><subfield code="0">(DE-588)4646476-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Origami</subfield><subfield code="0">(DE-588)4115467-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Origami</subfield><subfield code="0">(DE-588)4115467-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Faltungsalgorithmus</subfield><subfield code="0">(DE-588)4646476-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-14547-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-76735-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511975028</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351734</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511975028</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511975028</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942764 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511975028 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351734 |
oclc_num | 859642778 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 177 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge University Press |
record_format | marc |
spelling | O'Rourke, Joseph Verfasser aut How to fold it the mathematics of linkages, origami, and polyhedra Joseph O'Rourke Cambridge Cambridge University Press 2011 1 online resource (xii, 177 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: Part I. Linkages: 1. Robot arms; 2. Straight-line linkages and the pantograph; 3. Protein folding and pop-up cards; Part II. Origami: 4. Flat vertex folds; 5. Fold and one-cut; 6. The shopping bag theorem; Part III. Polyhedra: 7. Durer's problem: edge unfolding; 8. Unfolding orthogonal polyhedra; 9. Folding polygons to convex polyhedra; 10. Further reading; 11. Glossary; 12. Answers to exercises; 13. Permissions and acknowledgments What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? With the help of 200 colour figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's website, http://www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out Mathematik Liaison theory (Mathematics) Origami / Mathematics Polyhedra Protein folding Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Faltungsalgorithmus (DE-588)4646476-1 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Origami (DE-588)4115467-8 gnd rswk-swf Polyeder (DE-588)4132101-7 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 s Origami (DE-588)4115467-8 s Polyeder (DE-588)4132101-7 s Faltungsalgorithmus (DE-588)4646476-1 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-14547-3 Erscheint auch als Druckausgabe 978-0-521-76735-4 https://doi.org/10.1017/CBO9780511975028 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | O'Rourke, Joseph How to fold it the mathematics of linkages, origami, and polyhedra Machine generated contents note: Part I. Linkages: 1. Robot arms; 2. Straight-line linkages and the pantograph; 3. Protein folding and pop-up cards; Part II. Origami: 4. Flat vertex folds; 5. Fold and one-cut; 6. The shopping bag theorem; Part III. Polyhedra: 7. Durer's problem: edge unfolding; 8. Unfolding orthogonal polyhedra; 9. Folding polygons to convex polyhedra; 10. Further reading; 11. Glossary; 12. Answers to exercises; 13. Permissions and acknowledgments Mathematik Liaison theory (Mathematics) Origami / Mathematics Polyhedra Protein folding Angewandte Mathematik (DE-588)4142443-8 gnd Faltungsalgorithmus (DE-588)4646476-1 gnd Geometrie (DE-588)4020236-7 gnd Origami (DE-588)4115467-8 gnd Polyeder (DE-588)4132101-7 gnd |
subject_GND | (DE-588)4142443-8 (DE-588)4646476-1 (DE-588)4020236-7 (DE-588)4115467-8 (DE-588)4132101-7 |
title | How to fold it the mathematics of linkages, origami, and polyhedra |
title_auth | How to fold it the mathematics of linkages, origami, and polyhedra |
title_exact_search | How to fold it the mathematics of linkages, origami, and polyhedra |
title_full | How to fold it the mathematics of linkages, origami, and polyhedra Joseph O'Rourke |
title_fullStr | How to fold it the mathematics of linkages, origami, and polyhedra Joseph O'Rourke |
title_full_unstemmed | How to fold it the mathematics of linkages, origami, and polyhedra Joseph O'Rourke |
title_short | How to fold it |
title_sort | how to fold it the mathematics of linkages origami and polyhedra |
title_sub | the mathematics of linkages, origami, and polyhedra |
topic | Mathematik Liaison theory (Mathematics) Origami / Mathematics Polyhedra Protein folding Angewandte Mathematik (DE-588)4142443-8 gnd Faltungsalgorithmus (DE-588)4646476-1 gnd Geometrie (DE-588)4020236-7 gnd Origami (DE-588)4115467-8 gnd Polyeder (DE-588)4132101-7 gnd |
topic_facet | Mathematik Liaison theory (Mathematics) Origami / Mathematics Polyhedra Protein folding Angewandte Mathematik Faltungsalgorithmus Geometrie Origami Polyeder |
url | https://doi.org/10.1017/CBO9780511975028 |
work_keys_str_mv | AT orourkejoseph howtofolditthemathematicsoflinkagesorigamiandpolyhedra |