Probability, random processes, and statistical analysis:
Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UER01 Volltext |
Zusammenfassung: | Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxxi, 780 pages) |
ISBN: | 9780511977770 |
DOI: | 10.1017/CBO9780511977770 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942748 | ||
003 | DE-604 | ||
005 | 20210709 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2012 |||| o||u| ||||||eng d | ||
020 | |a 9780511977770 |c Online |9 978-0-511-97777-0 | ||
024 | 7 | |a 10.1017/CBO9780511977770 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511977770 | ||
035 | |a (OCoLC)992840084 | ||
035 | |a (DE-599)BVBBV043942748 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-29 |a DE-92 | ||
082 | 0 | |a 519.2/2 |2 23 | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Kobayashi, Hisashi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probability, random processes, and statistical analysis |c Hisashi Kobayashi, Brian L. Mark, William Turin |
246 | 1 | 3 | |a Probability, Random Processes, & Statistical Analysis |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 online resource (xxxi, 780 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Machine generated contents note: 1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and it's processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models | |
520 | |a Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals | ||
650 | 4 | |a Stochastic analysis | |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 2 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Mark, Brian L. |d 1969- |e Sonstige |4 oth | |
700 | 1 | |a Turin, William |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-521-89544-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511977770 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351718 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511977770 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511977770 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511977770 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885992652800 |
---|---|
any_adam_object | |
author | Kobayashi, Hisashi |
author_facet | Kobayashi, Hisashi |
author_role | aut |
author_sort | Kobayashi, Hisashi |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV043942748 |
classification_rvk | SK 800 |
collection | ZDB-20-CBO |
contents | Machine generated contents note: 1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and it's processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models |
ctrlnum | (ZDB-20-CBO)CR9780511977770 (OCoLC)992840084 (DE-599)BVBBV043942748 |
dewey-full | 519.2/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/2 |
dewey-search | 519.2/2 |
dewey-sort | 3519.2 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511977770 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04791nmm a2200577zc 4500</leader><controlfield tag="001">BV043942748</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210709 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511977770</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-97777-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511977770</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511977770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992840084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942748</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kobayashi, Hisashi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability, random processes, and statistical analysis</subfield><subfield code="c">Hisashi Kobayashi, Brian L. Mark, William Turin</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Probability, Random Processes, & Statistical Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxi, 780 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: 1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and it's processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mark, Brian L.</subfield><subfield code="d">1969-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Turin, William</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-521-89544-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511977770</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351718</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511977770</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511977770</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511977770</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043942748 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511977770 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351718 |
oclc_num | 992840084 |
open_access_boolean | |
owner | DE-12 DE-29 DE-92 |
owner_facet | DE-12 DE-29 DE-92 |
physical | 1 online resource (xxxi, 780 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UER_PDA_CBO_Kauf |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Kobayashi, Hisashi Verfasser aut Probability, random processes, and statistical analysis Hisashi Kobayashi, Brian L. Mark, William Turin Probability, Random Processes, & Statistical Analysis Cambridge Cambridge University Press 2012 1 online resource (xxxi, 780 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Machine generated contents note: 1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and it's processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals Stochastic analysis Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Statistik (DE-588)4056995-0 s Stochastischer Prozess (DE-588)4057630-9 s 2\p DE-604 Mark, Brian L. 1969- Sonstige oth Turin, William Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 978-0-521-89544-6 https://doi.org/10.1017/CBO9780511977770 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kobayashi, Hisashi Probability, random processes, and statistical analysis Machine generated contents note: 1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and it's processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models Stochastic analysis Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4079013-7 (DE-588)4057630-9 (DE-588)4056995-0 (DE-588)4123623-3 |
title | Probability, random processes, and statistical analysis |
title_alt | Probability, Random Processes, & Statistical Analysis |
title_auth | Probability, random processes, and statistical analysis |
title_exact_search | Probability, random processes, and statistical analysis |
title_full | Probability, random processes, and statistical analysis Hisashi Kobayashi, Brian L. Mark, William Turin |
title_fullStr | Probability, random processes, and statistical analysis Hisashi Kobayashi, Brian L. Mark, William Turin |
title_full_unstemmed | Probability, random processes, and statistical analysis Hisashi Kobayashi, Brian L. Mark, William Turin |
title_short | Probability, random processes, and statistical analysis |
title_sort | probability random processes and statistical analysis |
topic | Stochastic analysis Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Stochastic analysis Wahrscheinlichkeitstheorie Stochastischer Prozess Statistik Lehrbuch |
url | https://doi.org/10.1017/CBO9780511977770 |
work_keys_str_mv | AT kobayashihisashi probabilityrandomprocessesandstatisticalanalysis AT markbrianl probabilityrandomprocessesandstatisticalanalysis AT turinwilliam probabilityrandomprocessesandstatisticalanalysis AT kobayashihisashi probabilityrandomprocessesstatisticalanalysis AT markbrianl probabilityrandomprocessesstatisticalanalysis AT turinwilliam probabilityrandomprocessesstatisticalanalysis |