Negative binomial regression:
At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have never before been thoroughly examined in a text on count response models: the canonical negative binomial; the NB-P model, where the negative binomial exponent is itself parameterized; and negative binomial mixed models. As the models address violations of the distributional assumptions of the basic Poisson model, identifying and handling overdispersion is a unifying theme. For practising researchers and statisticians who need to update their knowledge of Poisson and negative binomial models, the book provides a comprehensive overview of estimating methods and algorithms used to model counts, as well as specific guidelines on modeling strategy and how each model can be analyzed to access goodness-of-fit |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 251 pages) |
ISBN: | 9780511811852 |
DOI: | 10.1017/CBO9780511811852 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942721 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511811852 |c Online |9 978-0-511-81185-2 | ||
024 | 7 | |a 10.1017/CBO9780511811852 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511811852 | ||
035 | |a (OCoLC)967602857 | ||
035 | |a (DE-599)BVBBV043942721 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.24 |2 22 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
100 | 1 | |a Hilbe, Joseph M. |d 1944- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Negative binomial regression |c Joseph M. Hilbe |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xii, 251 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have never before been thoroughly examined in a text on count response models: the canonical negative binomial; the NB-P model, where the negative binomial exponent is itself parameterized; and negative binomial mixed models. As the models address violations of the distributional assumptions of the basic Poisson model, identifying and handling overdispersion is a unifying theme. For practising researchers and statisticians who need to update their knowledge of Poisson and negative binomial models, the book provides a comprehensive overview of estimating methods and algorithms used to model counts, as well as specific guidelines on modeling strategy and how each model can be analyzed to access goodness-of-fit | ||
650 | 4 | |a Negative binomial distribution | |
650 | 4 | |a Poisson algebras | |
650 | 0 | 7 | |a Negative Binomialverteilung |0 (DE-588)4194810-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Negative Binomialverteilung |0 (DE-588)4194810-5 |D s |
689 | 0 | 1 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-67444-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-85772-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511811852 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351691 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511811852 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511811852 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885947564032 |
---|---|
any_adam_object | |
author | Hilbe, Joseph M. 1944- |
author_facet | Hilbe, Joseph M. 1944- |
author_role | aut |
author_sort | Hilbe, Joseph M. 1944- |
author_variant | j m h jm jmh |
building | Verbundindex |
bvnumber | BV043942721 |
classification_rvk | QH 233 SK 840 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511811852 (OCoLC)967602857 (DE-599)BVBBV043942721 |
dewey-full | 519.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.24 |
dewey-search | 519.24 |
dewey-sort | 3519.24 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511811852 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03028nmm a2200505zc 4500</leader><controlfield tag="001">BV043942721</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511811852</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-81185-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511811852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511811852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.24</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilbe, Joseph M.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Negative binomial regression</subfield><subfield code="c">Joseph M. Hilbe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 251 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have never before been thoroughly examined in a text on count response models: the canonical negative binomial; the NB-P model, where the negative binomial exponent is itself parameterized; and negative binomial mixed models. As the models address violations of the distributional assumptions of the basic Poisson model, identifying and handling overdispersion is a unifying theme. For practising researchers and statisticians who need to update their knowledge of Poisson and negative binomial models, the book provides a comprehensive overview of estimating methods and algorithms used to model counts, as well as specific guidelines on modeling strategy and how each model can be analyzed to access goodness-of-fit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative binomial distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poisson algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Negative Binomialverteilung</subfield><subfield code="0">(DE-588)4194810-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Negative Binomialverteilung</subfield><subfield code="0">(DE-588)4194810-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-67444-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-85772-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511811852</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351691</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511811852</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511811852</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942721 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9780511811852 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351691 |
oclc_num | 967602857 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 251 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Hilbe, Joseph M. 1944- Verfasser aut Negative binomial regression Joseph M. Hilbe Cambridge Cambridge University Press 2007 1 online resource (xii, 251 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) At last - a book devoted to the negative binomial model and its many variations. Every model currently offered in commercial statistical software packages is discussed in detail - how each is derived, how each resolves a distributional problem, and numerous examples of their application. Many have never before been thoroughly examined in a text on count response models: the canonical negative binomial; the NB-P model, where the negative binomial exponent is itself parameterized; and negative binomial mixed models. As the models address violations of the distributional assumptions of the basic Poisson model, identifying and handling overdispersion is a unifying theme. For practising researchers and statisticians who need to update their knowledge of Poisson and negative binomial models, the book provides a comprehensive overview of estimating methods and algorithms used to model counts, as well as specific guidelines on modeling strategy and how each model can be analyzed to access goodness-of-fit Negative binomial distribution Poisson algebras Negative Binomialverteilung (DE-588)4194810-5 gnd rswk-swf Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Negative Binomialverteilung (DE-588)4194810-5 s Regressionsanalyse (DE-588)4129903-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-67444-7 Erscheint auch als Druckausgabe 978-0-521-85772-7 https://doi.org/10.1017/CBO9780511811852 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hilbe, Joseph M. 1944- Negative binomial regression Negative binomial distribution Poisson algebras Negative Binomialverteilung (DE-588)4194810-5 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
subject_GND | (DE-588)4194810-5 (DE-588)4129903-6 |
title | Negative binomial regression |
title_auth | Negative binomial regression |
title_exact_search | Negative binomial regression |
title_full | Negative binomial regression Joseph M. Hilbe |
title_fullStr | Negative binomial regression Joseph M. Hilbe |
title_full_unstemmed | Negative binomial regression Joseph M. Hilbe |
title_short | Negative binomial regression |
title_sort | negative binomial regression |
topic | Negative binomial distribution Poisson algebras Negative Binomialverteilung (DE-588)4194810-5 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
topic_facet | Negative binomial distribution Poisson algebras Negative Binomialverteilung Regressionsanalyse |
url | https://doi.org/10.1017/CBO9780511811852 |
work_keys_str_mv | AT hilbejosephm negativebinomialregression |