Analysis of boolean functions:
Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2014
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a 'highlight application' such as Arrow's theorem from economics, the Goldreich–Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and 'sharp threshold' theorems for random graph properties. The book includes roughly 450 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students and researchers in computer science theory and related mathematical fields |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xx, 423 pages) |
ISBN: | 9781139814782 |
DOI: | 10.1017/CBO9781139814782 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942679 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781139814782 |c Online |9 978-1-139-81478-2 | ||
024 | 7 | |a 10.1017/CBO9781139814782 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139814782 | ||
035 | |a (OCoLC)967776670 | ||
035 | |a (DE-599)BVBBV043942679 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 004.01/51 |2 23 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a O'Donnell, Ryan |d 1979- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analysis of boolean functions |c Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2014 | |
300 | |a 1 online resource (xx, 423 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a 'highlight application' such as Arrow's theorem from economics, the Goldreich–Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and 'sharp threshold' theorems for random graph properties. The book includes roughly 450 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students and researchers in computer science theory and related mathematical fields | ||
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algebra, Boolean | |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Boolesche Algebra |0 (DE-588)4146280-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 1 | |a Boolesche Algebra |0 (DE-588)4146280-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-03832-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-47154-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139814782 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351649 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139814782 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139814782 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885875212288 |
---|---|
any_adam_object | |
author | O'Donnell, Ryan 1979- |
author_facet | O'Donnell, Ryan 1979- |
author_role | aut |
author_sort | O'Donnell, Ryan 1979- |
author_variant | r o ro |
building | Verbundindex |
bvnumber | BV043942679 |
classification_rvk | SK 130 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781139814782 (OCoLC)967776670 (DE-599)BVBBV043942679 |
dewey-full | 004.01/51 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.01/51 |
dewey-search | 004.01/51 |
dewey-sort | 14.01 251 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1017/CBO9781139814782 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03064nmm a2200517zc 4500</leader><controlfield tag="001">BV043942679</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139814782</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-81478-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139814782</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139814782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776670</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942679</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.01/51</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Donnell, Ryan</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of boolean functions</subfield><subfield code="c">Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 423 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a 'highlight application' such as Arrow's theorem from economics, the Goldreich–Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and 'sharp threshold' theorems for random graph properties. The book includes roughly 450 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students and researchers in computer science theory and related mathematical fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Boolean</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-03832-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-47154-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139814782</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351649</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139814782</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139814782</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942679 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:18Z |
institution | BVB |
isbn | 9781139814782 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351649 |
oclc_num | 967776670 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xx, 423 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge University Press |
record_format | marc |
spelling | O'Donnell, Ryan 1979- Verfasser aut Analysis of boolean functions Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania Cambridge Cambridge University Press 2014 1 online resource (xx, 423 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a 'highlight application' such as Arrow's theorem from economics, the Goldreich–Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and 'sharp threshold' theorems for random graph properties. The book includes roughly 450 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students and researchers in computer science theory and related mathematical fields Informatik Mathematik Computer science / Mathematics Algebra, Boolean Informatik (DE-588)4026894-9 gnd rswk-swf Boolesche Algebra (DE-588)4146280-4 gnd rswk-swf Informatik (DE-588)4026894-9 s Boolesche Algebra (DE-588)4146280-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-107-03832-5 Erscheint auch als Druckausgabe 978-1-107-47154-2 https://doi.org/10.1017/CBO9781139814782 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | O'Donnell, Ryan 1979- Analysis of boolean functions Informatik Mathematik Computer science / Mathematics Algebra, Boolean Informatik (DE-588)4026894-9 gnd Boolesche Algebra (DE-588)4146280-4 gnd |
subject_GND | (DE-588)4026894-9 (DE-588)4146280-4 |
title | Analysis of boolean functions |
title_auth | Analysis of boolean functions |
title_exact_search | Analysis of boolean functions |
title_full | Analysis of boolean functions Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania |
title_fullStr | Analysis of boolean functions Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania |
title_full_unstemmed | Analysis of boolean functions Ryan O'Donnell, Carnegie Mellon University, Pittsburgh, Pennsylvania |
title_short | Analysis of boolean functions |
title_sort | analysis of boolean functions |
topic | Informatik Mathematik Computer science / Mathematics Algebra, Boolean Informatik (DE-588)4026894-9 gnd Boolesche Algebra (DE-588)4146280-4 gnd |
topic_facet | Informatik Mathematik Computer science / Mathematics Algebra, Boolean Boolesche Algebra |
url | https://doi.org/10.1017/CBO9781139814782 |
work_keys_str_mv | AT odonnellryan analysisofbooleanfunctions |