Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon: continuous and approximation theories
Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York ; Melbourne [u.a.]
Cambridge University Press
2000
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 75 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xxi, Seite 645-1067) |
ISBN: | 9780511574801 |
DOI: | 10.1017/CBO9780511574801 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942468 | ||
003 | DE-604 | ||
005 | 20211014 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780511574801 |c Online |9 978-0-511-57480-1 | ||
024 | 7 | |a 10.1017/CBO9780511574801 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511574801 | ||
035 | |a (OCoLC)967776678 | ||
035 | |a (DE-599)BVBBV043942468 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-83 | ||
082 | 0 | |a 515/.353 |2 21 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a 49N10 |2 msc | ||
084 | |a 35B37 |2 msc | ||
084 | |a 93C20 |2 msc | ||
100 | 1 | |a Lasiecka, Irena |d 1948- |0 (DE-588)111374383 |4 aut | |
245 | 1 | 0 | |a Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon |b continuous and approximation theories |c Irena Lasiecka, Roberto Triggiani |
264 | 1 | |a Cambridge ; New York ; Melbourne [u.a.] |b Cambridge University Press |c 2000 | |
300 | |a 1 Online-Ressource (xxi, Seite 645-1067) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v volume 75 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems | ||
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Control theory | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Triggiani, Roberto |d 1942- |0 (DE-588)112914292 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-58401-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-15568-7 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v volume 75 |w (DE-604)BV044777929 |9 75 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511574801 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351438 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511574801 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511574801 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885261795328 |
---|---|
any_adam_object | |
author | Lasiecka, Irena 1948- Triggiani, Roberto 1942- |
author_GND | (DE-588)111374383 (DE-588)112914292 |
author_facet | Lasiecka, Irena 1948- Triggiani, Roberto 1942- |
author_role | aut aut |
author_sort | Lasiecka, Irena 1948- |
author_variant | i l il r t rt |
building | Verbundindex |
bvnumber | BV043942468 |
classification_rvk | SK 560 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511574801 (OCoLC)967776678 (DE-599)BVBBV043942468 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511574801 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03540nmm a2200565zcb4500</leader><controlfield tag="001">BV043942468</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211014 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511574801</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-57480-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511574801</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511574801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942468</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49N10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B37</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lasiecka, Irena</subfield><subfield code="d">1948-</subfield><subfield code="0">(DE-588)111374383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon</subfield><subfield code="b">continuous and approximation theories</subfield><subfield code="c">Irena Lasiecka, Roberto Triggiani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York ; Melbourne [u.a.]</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, Seite 645-1067)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 75</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Triggiani, Roberto</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)112914292</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-58401-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-15568-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 75</subfield><subfield code="w">(DE-604)BV044777929</subfield><subfield code="9">75</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511574801</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351438</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574801</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511574801</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942468 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511574801 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351438 |
oclc_num | 967776678 |
open_access_boolean | |
owner | DE-12 DE-92 DE-83 |
owner_facet | DE-12 DE-92 DE-83 |
physical | 1 Online-Ressource (xxi, Seite 645-1067) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Lasiecka, Irena 1948- (DE-588)111374383 aut Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories Irena Lasiecka, Roberto Triggiani Cambridge ; New York ; Melbourne [u.a.] Cambridge University Press 2000 1 Online-Ressource (xxi, Seite 645-1067) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 75 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems Differential equations, Partial Control theory Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Parabolische Differentialgleichung (DE-588)4173245-5 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s DE-604 Parabolische Differentialgleichung (DE-588)4173245-5 s Triggiani, Roberto 1942- (DE-588)112914292 aut Erscheint auch als Druck-Ausgabe 978-0-521-58401-2 Erscheint auch als Druck-Ausgabe 978-0-521-15568-7 Encyclopedia of mathematics and its applications volume 75 (DE-604)BV044777929 75 https://doi.org/10.1017/CBO9780511574801 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lasiecka, Irena 1948- Triggiani, Roberto 1942- Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories Encyclopedia of mathematics and its applications Differential equations, Partial Control theory Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4173245-5 |
title | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories |
title_auth | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories |
title_exact_search | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories |
title_full | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories Irena Lasiecka, Roberto Triggiani |
title_fullStr | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories Irena Lasiecka, Roberto Triggiani |
title_full_unstemmed | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon continuous and approximation theories Irena Lasiecka, Roberto Triggiani |
title_short | Control theory for partial differential equations, 2, Abstract hyperbolic-like systems over a finite time horizon |
title_sort | control theory for partial differential equations 2 abstract hyperbolic like systems over a finite time horizon continuous and approximation theories |
title_sub | continuous and approximation theories |
topic | Differential equations, Partial Control theory Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd |
topic_facet | Differential equations, Partial Control theory Hyperbolische Differentialgleichung Parabolische Differentialgleichung |
url | https://doi.org/10.1017/CBO9780511574801 |
volume_link | (DE-604)BV044777929 |
work_keys_str_mv | AT lasieckairena controltheoryforpartialdifferentialequations2abstracthyperboliclikesystemsoverafinitetimehorizoncontinuousandapproximationtheories AT triggianiroberto controltheoryforpartialdifferentialequations2abstracthyperboliclikesystemsoverafinitetimehorizoncontinuousandapproximationtheories |