Geometry of sporadic groups, 2, Representations and amalgams:
This is the second volume in a two-volume set, which provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. The second volume contains a study of the representations of the geometries under consideration in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 91 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This is the second volume in a two-volume set, which provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. The second volume contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. The classification is based on the method of group amalgam, the most promising tool in modern finite group theory. Via their systematic treatment of group amalgams, the authors establish a deep and important mathematical result. This book will be of great interest to researchers in finite group theory, finite geometries and algebraic combinatorics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xviii, 286 pages) |
ISBN: | 9780511550249 |
DOI: | 10.1017/CBO9780511550249 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942467 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511550249 |c Online |9 978-0-511-55024-9 | ||
024 | 7 | |a 10.1017/CBO9780511550249 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511550249 | ||
035 | |a (OCoLC)967697688 | ||
035 | |a (DE-599)BVBBV043942467 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 21 | |
100 | 1 | |a Ivanov, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of sporadic groups, 2, Representations and amalgams |c A. A. Ivanov, S. V. Shpectorov |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xviii, 286 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 91 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This is the second volume in a two-volume set, which provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. The second volume contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. The classification is based on the method of group amalgam, the most promising tool in modern finite group theory. Via their systematic treatment of group amalgams, the authors establish a deep and important mathematical result. This book will be of great interest to researchers in finite group theory, finite geometries and algebraic combinatorics | ||
650 | 4 | |a Sporadic groups (Mathematics) | |
700 | 1 | |a Shpectorov, S. V. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-62349-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511550249 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351437 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511550249 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511550249 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885273329664 |
---|---|
any_adam_object | |
author | Ivanov, A. A. |
author_facet | Ivanov, A. A. |
author_role | aut |
author_sort | Ivanov, A. A. |
author_variant | a a i aa aai |
building | Verbundindex |
bvnumber | BV043942467 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511550249 (OCoLC)967697688 (DE-599)BVBBV043942467 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511550249 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02464nmm a2200409zcb4500</leader><controlfield tag="001">BV043942467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511550249</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-55024-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511550249</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511550249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanov, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of sporadic groups, 2, Representations and amalgams</subfield><subfield code="c">A. A. Ivanov, S. V. Shpectorov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 286 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 91</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the second volume in a two-volume set, which provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. The second volume contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. The classification is based on the method of group amalgam, the most promising tool in modern finite group theory. Via their systematic treatment of group amalgams, the authors establish a deep and important mathematical result. This book will be of great interest to researchers in finite group theory, finite geometries and algebraic combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sporadic groups (Mathematics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shpectorov, S. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-62349-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511550249</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351437</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550249</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511550249</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942467 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511550249 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351437 |
oclc_num | 967697688 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xviii, 286 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Ivanov, A. A. Verfasser aut Geometry of sporadic groups, 2, Representations and amalgams A. A. Ivanov, S. V. Shpectorov Cambridge Cambridge University Press 2002 1 online resource (xviii, 286 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 91 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This is the second volume in a two-volume set, which provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. The second volume contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. The classification is based on the method of group amalgam, the most promising tool in modern finite group theory. Via their systematic treatment of group amalgams, the authors establish a deep and important mathematical result. This book will be of great interest to researchers in finite group theory, finite geometries and algebraic combinatorics Sporadic groups (Mathematics) Shpectorov, S. V. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-62349-0 https://doi.org/10.1017/CBO9780511550249 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ivanov, A. A. Geometry of sporadic groups, 2, Representations and amalgams Sporadic groups (Mathematics) |
title | Geometry of sporadic groups, 2, Representations and amalgams |
title_auth | Geometry of sporadic groups, 2, Representations and amalgams |
title_exact_search | Geometry of sporadic groups, 2, Representations and amalgams |
title_full | Geometry of sporadic groups, 2, Representations and amalgams A. A. Ivanov, S. V. Shpectorov |
title_fullStr | Geometry of sporadic groups, 2, Representations and amalgams A. A. Ivanov, S. V. Shpectorov |
title_full_unstemmed | Geometry of sporadic groups, 2, Representations and amalgams A. A. Ivanov, S. V. Shpectorov |
title_short | Geometry of sporadic groups, 2, Representations and amalgams |
title_sort | geometry of sporadic groups 2 representations and amalgams |
topic | Sporadic groups (Mathematics) |
topic_facet | Sporadic groups (Mathematics) |
url | https://doi.org/10.1017/CBO9780511550249 |
work_keys_str_mv | AT ivanovaa geometryofsporadicgroups2representationsandamalgams AT shpectorovsv geometryofsporadicgroups2representationsandamalgams |