Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models:
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include th...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Cambridge studies in advanced mathematics
114 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 438 Seiten) |
ISBN: | 9780511543203 |
DOI: | 10.1017/CBO9780511543203 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942466 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511543203 |c Online |9 978-0-511-54320-3 | ||
024 | 7 | |a 10.1017/CBO9780511543203 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543203 | ||
035 | |a (OCoLC)967683977 | ||
035 | |a (DE-599)BVBBV043942466 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 530.155355 |2 22 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Gesztesy, Fritz |d 1953- |e Verfasser |0 (DE-588)134200136 |4 aut | |
245 | 1 | 0 | |a Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models |c Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl |
246 | 1 | 3 | |a Soliton Equations & Their Algebro-Geometric Solutions |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (x, 438 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 114 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results | ||
650 | 4 | |a Differential equations, Nonlinear / Numerical solutions | |
650 | 4 | |a Solitons | |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellengleichung |0 (DE-588)4065315-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 1 | 1 | |a Wellengleichung |0 (DE-588)4065315-8 |D s |
689 | 1 | 2 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Holden, Helge |d 1956- |e Verfasser |0 (DE-588)111693667 |4 aut | |
700 | 1 | |a Michor, Johanna |e Verfasser |4 aut | |
700 | 1 | |a Teschl, Gerald |d 1970- |e Verfasser |0 (DE-588)140501037 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-75308-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-75308-1 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 114 |w (DE-604)BV044781283 |9 114 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543203 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351436 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511543203 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543203 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543203 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885270183936 |
---|---|
any_adam_object | |
author | Gesztesy, Fritz 1953- Holden, Helge 1956- Michor, Johanna Teschl, Gerald 1970- |
author_GND | (DE-588)134200136 (DE-588)111693667 (DE-588)140501037 |
author_facet | Gesztesy, Fritz 1953- Holden, Helge 1956- Michor, Johanna Teschl, Gerald 1970- |
author_role | aut aut aut aut |
author_sort | Gesztesy, Fritz 1953- |
author_variant | f g fg h h hh j m jm g t gt |
building | Verbundindex |
bvnumber | BV043942466 |
classification_rvk | SK 540 SK 920 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511543203 (OCoLC)967683977 (DE-599)BVBBV043942466 |
dewey-full | 530.155355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.155355 |
dewey-search | 530.155355 |
dewey-sort | 3530.155355 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511543203 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04082nmm a2200649zcb4500</leader><controlfield tag="001">BV043942466</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543203</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54320-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543203</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967683977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942466</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.155355</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gesztesy, Fritz</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134200136</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models</subfield><subfield code="c">Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Soliton Equations & Their Algebro-Geometric Solutions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 438 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">114</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solitons</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holden, Helge</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)111693667</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michor, Johanna</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teschl, Gerald</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140501037</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-75308-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-75308-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">114</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">114</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543203</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351436</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543203</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543203</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543203</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942466 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511543203 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351436 |
oclc_num | 967683977 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (x, 438 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Gesztesy, Fritz 1953- Verfasser (DE-588)134200136 aut Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl Soliton Equations & Their Algebro-Geometric Solutions Cambridge Cambridge University Press 2008 1 online resource (x, 438 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 114 Title from publisher's bibliographic system (viewed on 05 Oct 2015) As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results Differential equations, Nonlinear / Numerical solutions Solitons Soliton (DE-588)4135213-0 gnd rswk-swf Wellengleichung (DE-588)4065315-8 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Lösung Mathematik (DE-588)4120678-2 s DE-604 Soliton (DE-588)4135213-0 s Wellengleichung (DE-588)4065315-8 s Holden, Helge 1956- Verfasser (DE-588)111693667 aut Michor, Johanna Verfasser aut Teschl, Gerald 1970- Verfasser (DE-588)140501037 aut Erscheint auch als Druck-Ausgabe 978-0-521-75308-1 Erscheint auch als Druckausgabe 978-0-521-75308-1 Cambridge studies in advanced mathematics 114 (DE-604)BV044781283 114 https://doi.org/10.1017/CBO9780511543203 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gesztesy, Fritz 1953- Holden, Helge 1956- Michor, Johanna Teschl, Gerald 1970- Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models Cambridge studies in advanced mathematics Differential equations, Nonlinear / Numerical solutions Solitons Soliton (DE-588)4135213-0 gnd Wellengleichung (DE-588)4065315-8 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
subject_GND | (DE-588)4135213-0 (DE-588)4065315-8 (DE-588)4001161-6 (DE-588)4120678-2 |
title | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models |
title_alt | Soliton Equations & Their Algebro-Geometric Solutions |
title_auth | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models |
title_exact_search | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models |
title_full | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl |
title_fullStr | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl |
title_full_unstemmed | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl |
title_short | Soliton equations and their algebro-geometric solutions, Volume 2, (1 + 1)-dimensional discrete models |
title_sort | soliton equations and their algebro geometric solutions volume 2 1 1 dimensional discrete models |
topic | Differential equations, Nonlinear / Numerical solutions Solitons Soliton (DE-588)4135213-0 gnd Wellengleichung (DE-588)4065315-8 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
topic_facet | Differential equations, Nonlinear / Numerical solutions Solitons Soliton Wellengleichung Algebraische Geometrie Lösung Mathematik |
url | https://doi.org/10.1017/CBO9780511543203 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT gesztesyfritz solitonequationsandtheiralgebrogeometricsolutionsvolume211dimensionaldiscretemodels AT holdenhelge solitonequationsandtheiralgebrogeometricsolutionsvolume211dimensionaldiscretemodels AT michorjohanna solitonequationsandtheiralgebrogeometricsolutionsvolume211dimensionaldiscretemodels AT teschlgerald solitonequationsandtheiralgebrogeometricsolutionsvolume211dimensionaldiscretemodels AT gesztesyfritz solitonequationstheiralgebrogeometricsolutions AT holdenhelge solitonequationstheiralgebrogeometricsolutions AT michorjohanna solitonequationstheiralgebrogeometricsolutions AT teschlgerald solitonequationstheiralgebrogeometricsolutions |