Enumerative combinatorics, Volume 2:

This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Stanley, Richard P. 1944- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1999
Schriftenreihe:Cambridge studies in advanced mathematics 62
Schlagworte:
Online-Zugang:BSB01
FHN01
URL des Erstveröffentlichers
Zusammenfassung:This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference
Beschreibung:Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Beschreibung:1 online resource (xii, 585 pages)
ISBN:9780511609589
DOI:10.1017/CBO9780511609589

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen