Independent random variables and rearrangement invariant spaces:
The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on it...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schriftenreihe: | London Mathematical Society lecture note series
194 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on its distribution only, and this property allows the results and methods associated with r.i. spaces to be applied to problems in probability theory. On the other hand, probabilistic methods can also prove useful in the study of r.i. spaces. In this book new techniques are used and a number of interesting results are given. Most of the results are due to the author but have never before been available in English. Here they are all presented together in a volume that will be essential reading for all serious researchers in this area |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 115 pages) |
ISBN: | 9780511662348 |
DOI: | 10.1017/CBO9780511662348 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942416 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511662348 |c Online |9 978-0-511-66234-8 | ||
024 | 7 | |a 10.1017/CBO9780511662348 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662348 | ||
035 | |a (OCoLC)967684033 | ||
035 | |a (DE-599)BVBBV043942416 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Braverman, Michael Sh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Independent random variables and rearrangement invariant spaces |c Michael Sh. Braverman |
246 | 1 | 3 | |a Independent Random Variables & Rearrangement Invariant Spaces |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (viii, 115 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 194 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Ch. I. Preliminaries. 1. Rearrangement invariant spaces. 2. The function of dilatation and Boyd indices. 3. Independent random variables. 4. Probability inequalities. 5. Disjoint random variables. 6. The Kruglov property. 7. Bases and sequence spaces. 8. Stable distributions -- Ch. II. Inequalities for sums of independent random variables in rearrangement invariant spaces. 1. Rosenthal's inequality and a characterization of the spaces L[subscript p]. 2. Estimates of von Bahr-Esseen type. 3. Upper estimates of the Rosenthal type. 4. Estimates in exponential Orlicz spaces -- Ch. III. Linear combinations of independent random variables in rearrangement invariant spaces. 1. l[subscript q]-estimates [actual symbol not reproducible]. 2. l[subscript 2]-estimates. 3. Stable random variables with different exponents. 4. Equidistributed random variables in exponential Orlicz spaces -- Ch. IV. Complementability of subspaces generated by independent random variables | |
520 | |a The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on its distribution only, and this property allows the results and methods associated with r.i. spaces to be applied to problems in probability theory. On the other hand, probabilistic methods can also prove useful in the study of r.i. spaces. In this book new techniques are used and a number of interesting results are given. Most of the results are due to the author but have never before been available in English. Here they are all presented together in a volume that will be essential reading for all serious researchers in this area | ||
650 | 4 | |a Random variables | |
650 | 4 | |a Rearrangement invariant spaces | |
650 | 4 | |a Inequalities (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-45515-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662348 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351386 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511662348 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662348 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885167423488 |
---|---|
any_adam_object | |
author | Braverman, Michael Sh |
author_facet | Braverman, Michael Sh |
author_role | aut |
author_sort | Braverman, Michael Sh |
author_variant | m s b ms msb |
building | Verbundindex |
bvnumber | BV043942416 |
classification_rvk | SI 320 SK 600 SK 800 |
collection | ZDB-20-CBO |
contents | Ch. I. Preliminaries. 1. Rearrangement invariant spaces. 2. The function of dilatation and Boyd indices. 3. Independent random variables. 4. Probability inequalities. 5. Disjoint random variables. 6. The Kruglov property. 7. Bases and sequence spaces. 8. Stable distributions -- Ch. II. Inequalities for sums of independent random variables in rearrangement invariant spaces. 1. Rosenthal's inequality and a characterization of the spaces L[subscript p]. 2. Estimates of von Bahr-Esseen type. 3. Upper estimates of the Rosenthal type. 4. Estimates in exponential Orlicz spaces -- Ch. III. Linear combinations of independent random variables in rearrangement invariant spaces. 1. l[subscript q]-estimates [actual symbol not reproducible]. 2. l[subscript 2]-estimates. 3. Stable random variables with different exponents. 4. Equidistributed random variables in exponential Orlicz spaces -- Ch. IV. Complementability of subspaces generated by independent random variables |
ctrlnum | (ZDB-20-CBO)CR9780511662348 (OCoLC)967684033 (DE-599)BVBBV043942416 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662348 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03659nmm a2200481zcb4500</leader><controlfield tag="001">BV043942416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662348</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66234-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662348</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967684033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Braverman, Michael Sh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Independent random variables and rearrangement invariant spaces</subfield><subfield code="c">Michael Sh. Braverman</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Independent Random Variables & Rearrangement Invariant Spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 115 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">194</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ch. I. Preliminaries. 1. Rearrangement invariant spaces. 2. The function of dilatation and Boyd indices. 3. Independent random variables. 4. Probability inequalities. 5. Disjoint random variables. 6. The Kruglov property. 7. Bases and sequence spaces. 8. Stable distributions -- Ch. II. Inequalities for sums of independent random variables in rearrangement invariant spaces. 1. Rosenthal's inequality and a characterization of the spaces L[subscript p]. 2. Estimates of von Bahr-Esseen type. 3. Upper estimates of the Rosenthal type. 4. Estimates in exponential Orlicz spaces -- Ch. III. Linear combinations of independent random variables in rearrangement invariant spaces. 1. l[subscript q]-estimates [actual symbol not reproducible]. 2. l[subscript 2]-estimates. 3. Stable random variables with different exponents. 4. Equidistributed random variables in exponential Orlicz spaces -- Ch. IV. Complementability of subspaces generated by independent random variables</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on its distribution only, and this property allows the results and methods associated with r.i. spaces to be applied to problems in probability theory. On the other hand, probabilistic methods can also prove useful in the study of r.i. spaces. In this book new techniques are used and a number of interesting results are given. Most of the results are due to the author but have never before been available in English. Here they are all presented together in a volume that will be essential reading for all serious researchers in this area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rearrangement invariant spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inequalities (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-45515-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662348</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351386</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662348</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662348</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942416 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662348 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351386 |
oclc_num | 967684033 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 115 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Braverman, Michael Sh Verfasser aut Independent random variables and rearrangement invariant spaces Michael Sh. Braverman Independent Random Variables & Rearrangement Invariant Spaces Cambridge Cambridge University Press 1994 1 online resource (viii, 115 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 194 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. I. Preliminaries. 1. Rearrangement invariant spaces. 2. The function of dilatation and Boyd indices. 3. Independent random variables. 4. Probability inequalities. 5. Disjoint random variables. 6. The Kruglov property. 7. Bases and sequence spaces. 8. Stable distributions -- Ch. II. Inequalities for sums of independent random variables in rearrangement invariant spaces. 1. Rosenthal's inequality and a characterization of the spaces L[subscript p]. 2. Estimates of von Bahr-Esseen type. 3. Upper estimates of the Rosenthal type. 4. Estimates in exponential Orlicz spaces -- Ch. III. Linear combinations of independent random variables in rearrangement invariant spaces. 1. l[subscript q]-estimates [actual symbol not reproducible]. 2. l[subscript 2]-estimates. 3. Stable random variables with different exponents. 4. Equidistributed random variables in exponential Orlicz spaces -- Ch. IV. Complementability of subspaces generated by independent random variables The subject of this book lies on the boundary between probability theory and the theory of function spaces. Here Professor Braverman investigates independent random variables in rearrangement invariant (r.i.) spaces. The significant feature of r.i. spaces is that the norm of an element depends on its distribution only, and this property allows the results and methods associated with r.i. spaces to be applied to problems in probability theory. On the other hand, probabilistic methods can also prove useful in the study of r.i. spaces. In this book new techniques are used and a number of interesting results are given. Most of the results are due to the author but have never before been available in English. Here they are all presented together in a volume that will be essential reading for all serious researchers in this area Random variables Rearrangement invariant spaces Inequalities (Mathematics) Erscheint auch als Druckausgabe 978-0-521-45515-2 https://doi.org/10.1017/CBO9780511662348 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Braverman, Michael Sh Independent random variables and rearrangement invariant spaces Ch. I. Preliminaries. 1. Rearrangement invariant spaces. 2. The function of dilatation and Boyd indices. 3. Independent random variables. 4. Probability inequalities. 5. Disjoint random variables. 6. The Kruglov property. 7. Bases and sequence spaces. 8. Stable distributions -- Ch. II. Inequalities for sums of independent random variables in rearrangement invariant spaces. 1. Rosenthal's inequality and a characterization of the spaces L[subscript p]. 2. Estimates of von Bahr-Esseen type. 3. Upper estimates of the Rosenthal type. 4. Estimates in exponential Orlicz spaces -- Ch. III. Linear combinations of independent random variables in rearrangement invariant spaces. 1. l[subscript q]-estimates [actual symbol not reproducible]. 2. l[subscript 2]-estimates. 3. Stable random variables with different exponents. 4. Equidistributed random variables in exponential Orlicz spaces -- Ch. IV. Complementability of subspaces generated by independent random variables Random variables Rearrangement invariant spaces Inequalities (Mathematics) |
title | Independent random variables and rearrangement invariant spaces |
title_alt | Independent Random Variables & Rearrangement Invariant Spaces |
title_auth | Independent random variables and rearrangement invariant spaces |
title_exact_search | Independent random variables and rearrangement invariant spaces |
title_full | Independent random variables and rearrangement invariant spaces Michael Sh. Braverman |
title_fullStr | Independent random variables and rearrangement invariant spaces Michael Sh. Braverman |
title_full_unstemmed | Independent random variables and rearrangement invariant spaces Michael Sh. Braverman |
title_short | Independent random variables and rearrangement invariant spaces |
title_sort | independent random variables and rearrangement invariant spaces |
topic | Random variables Rearrangement invariant spaces Inequalities (Mathematics) |
topic_facet | Random variables Rearrangement invariant spaces Inequalities (Mathematics) |
url | https://doi.org/10.1017/CBO9780511662348 |
work_keys_str_mv | AT bravermanmichaelsh independentrandomvariablesandrearrangementinvariantspaces AT bravermanmichaelsh independentrandomvariablesrearrangementinvariantspaces |