The algebraic characterization of geometric 4-manifolds:
This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schriftenreihe: | London Mathematical Society lecture note series
198 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 170 pages) |
ISBN: | 9780511526350 |
DOI: | 10.1017/CBO9780511526350 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942415 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511526350 |c Online |9 978-0-511-52635-0 | ||
024 | 7 | |a 10.1017/CBO9780511526350 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526350 | ||
035 | |a (OCoLC)849943471 | ||
035 | |a (DE-599)BVBBV043942415 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Hillman, Jonathan A. |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The algebraic characterization of geometric 4-manifolds |c J.A. Hillman |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 online resource (ix, 170 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 198 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology | ||
650 | 4 | |a Four-manifolds (Topology) | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Dimension 4 |0 (DE-588)4338676-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-46778-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526350 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351385 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511526350 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526350 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885164277760 |
---|---|
any_adam_object | |
author | Hillman, Jonathan A. 1947- |
author_facet | Hillman, Jonathan A. 1947- |
author_role | aut |
author_sort | Hillman, Jonathan A. 1947- |
author_variant | j a h ja jah |
building | Verbundindex |
bvnumber | BV043942415 |
classification_rvk | SI 320 SK 350 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526350 (OCoLC)849943471 (DE-599)BVBBV043942415 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526350 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02697nmm a2200505zcb4500</leader><controlfield tag="001">BV043942415</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526350</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52635-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526350</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849943471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942415</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hillman, Jonathan A.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The algebraic characterization of geometric 4-manifolds</subfield><subfield code="c">J.A. Hillman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 170 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">198</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Four-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-46778-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526350</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351385</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526350</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526350</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942415 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511526350 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351385 |
oclc_num | 849943471 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 170 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Hillman, Jonathan A. 1947- Verfasser aut The algebraic characterization of geometric 4-manifolds J.A. Hillman Cambridge Cambridge University Press 1994 1 online resource (ix, 170 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 198 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel–Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology Four-manifolds (Topology) Homotopy theory Dimension 4 (DE-588)4338676-3 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Dimension 4 (DE-588)4338676-3 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-46778-0 https://doi.org/10.1017/CBO9780511526350 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hillman, Jonathan A. 1947- The algebraic characterization of geometric 4-manifolds Four-manifolds (Topology) Homotopy theory Dimension 4 (DE-588)4338676-3 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4338676-3 (DE-588)4037379-4 |
title | The algebraic characterization of geometric 4-manifolds |
title_auth | The algebraic characterization of geometric 4-manifolds |
title_exact_search | The algebraic characterization of geometric 4-manifolds |
title_full | The algebraic characterization of geometric 4-manifolds J.A. Hillman |
title_fullStr | The algebraic characterization of geometric 4-manifolds J.A. Hillman |
title_full_unstemmed | The algebraic characterization of geometric 4-manifolds J.A. Hillman |
title_short | The algebraic characterization of geometric 4-manifolds |
title_sort | the algebraic characterization of geometric 4 manifolds |
topic | Four-manifolds (Topology) Homotopy theory Dimension 4 (DE-588)4338676-3 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Four-manifolds (Topology) Homotopy theory Dimension 4 Mannigfaltigkeit |
url | https://doi.org/10.1017/CBO9780511526350 |
work_keys_str_mv | AT hillmanjonathana thealgebraiccharacterizationofgeometric4manifolds |