Chain conditions in topology:
A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1982
|
Schriftenreihe: | Cambridge tracts in mathematics
79 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdös and the Hungarian school, by Erdös and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces |
Beschreibung: | 1 Online-Ressource (xiii, 300 Seiten) |
ISBN: | 9780511897337 |
DOI: | 10.1017/CBO9780511897337 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942413 | ||
003 | DE-604 | ||
005 | 20190314 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1982 |||| o||u| ||||||eng d | ||
020 | |a 9780511897337 |c Online |9 978-0-511-89733-7 | ||
024 | 7 | |a 10.1017/CBO9780511897337 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511897337 | ||
035 | |a (OCoLC)859643216 | ||
035 | |a (DE-599)BVBBV043942413 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 514/.32 |2 19eng | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Comfort, William Wistar |d 1933- |e Verfasser |0 (DE-588)1071083821 |4 aut | |
245 | 1 | 0 | |a Chain conditions in topology |c W.W. Comfort, S. Negrepontis |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1982 | |
300 | |a 1 Online-Ressource (xiii, 300 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 79 | |
520 | |a A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdös and the Hungarian school, by Erdös and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces | ||
650 | 4 | |a Topology | |
650 | 4 | |a Topological spaces | |
650 | 4 | |a Combinatorial analysis | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kettenbedingung |0 (DE-588)4163685-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologischer Raum |0 (DE-588)4137586-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologischer Raum |0 (DE-588)4137586-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | 1 | |a Kettenbedingung |0 (DE-588)4163685-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Negrepontēs, Stylianos |d ca. 20./21. Jh. |e Sonstige |0 (DE-588)1057980986 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-23487-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-09062-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511897337 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351383 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511897337 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511897337 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511897337 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885154840576 |
---|---|
any_adam_object | |
author | Comfort, William Wistar 1933- |
author_GND | (DE-588)1071083821 (DE-588)1057980986 |
author_facet | Comfort, William Wistar 1933- |
author_role | aut |
author_sort | Comfort, William Wistar 1933- |
author_variant | w w c ww wwc |
building | Verbundindex |
bvnumber | BV043942413 |
classification_rvk | SK 280 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511897337 (OCoLC)859643216 (DE-599)BVBBV043942413 |
dewey-full | 514/.32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.32 |
dewey-search | 514/.32 |
dewey-sort | 3514 232 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511897337 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03270nmm a2200565zcb4500</leader><controlfield tag="001">BV043942413</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190314 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511897337</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-89733-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511897337</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511897337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859643216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942413</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.32</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Comfort, William Wistar</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1071083821</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chain conditions in topology</subfield><subfield code="c">W.W. Comfort, S. Negrepontis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 300 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">79</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdös and the Hungarian school, by Erdös and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kettenbedingung</subfield><subfield code="0">(DE-588)4163685-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologischer Raum</subfield><subfield code="0">(DE-588)4137586-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kettenbedingung</subfield><subfield code="0">(DE-588)4163685-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negrepontēs, Stylianos</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1057980986</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-23487-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-09062-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511897337</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351383</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897337</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897337</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511897337</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942413 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511897337 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351383 |
oclc_num | 859643216 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 300 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Comfort, William Wistar 1933- Verfasser (DE-588)1071083821 aut Chain conditions in topology W.W. Comfort, S. Negrepontis Cambridge Cambridge University Press 1982 1 Online-Ressource (xiii, 300 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 79 A chain condition is a property, typically involving considerations of cardinality, of the family of open subsets of a topological space. (Sample questions: (a) How large a fmily of pairwise disjoint open sets does the space admit? (b) From an uncountable family of open sets, can one always extract an uncountable subfamily with the finite intersection property. This monograph, which is partly fresh research and partly expository (in the sense that the authors co-ordinate and unify disparate results obtained in several different countries over a period of several decades) is devoted to the systematic use of infinitary combinatorial methods in topology to obtain results concerning chain conditions. The combinatorial tools developed by P. Erdös and the Hungarian school, by Erdös and Rado in the 1960s and by the Soviet mathematician Shanin in the 1940s, are adequate to handle many natural questions concerning chain conditions in product spaces Topology Topological spaces Combinatorial analysis Topologie (DE-588)4060425-1 gnd rswk-swf Kettenbedingung (DE-588)4163685-5 gnd rswk-swf Topologischer Raum (DE-588)4137586-5 gnd rswk-swf Topologischer Raum (DE-588)4137586-5 s DE-604 Topologie (DE-588)4060425-1 s Kettenbedingung (DE-588)4163685-5 s Negrepontēs, Stylianos ca. 20./21. Jh. Sonstige (DE-588)1057980986 oth Erscheint auch als Druck-Ausgabe 978-0-521-23487-0 Erscheint auch als Druck-Ausgabe 978-0-521-09062-9 https://doi.org/10.1017/CBO9780511897337 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Comfort, William Wistar 1933- Chain conditions in topology Topology Topological spaces Combinatorial analysis Topologie (DE-588)4060425-1 gnd Kettenbedingung (DE-588)4163685-5 gnd Topologischer Raum (DE-588)4137586-5 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4163685-5 (DE-588)4137586-5 |
title | Chain conditions in topology |
title_auth | Chain conditions in topology |
title_exact_search | Chain conditions in topology |
title_full | Chain conditions in topology W.W. Comfort, S. Negrepontis |
title_fullStr | Chain conditions in topology W.W. Comfort, S. Negrepontis |
title_full_unstemmed | Chain conditions in topology W.W. Comfort, S. Negrepontis |
title_short | Chain conditions in topology |
title_sort | chain conditions in topology |
topic | Topology Topological spaces Combinatorial analysis Topologie (DE-588)4060425-1 gnd Kettenbedingung (DE-588)4163685-5 gnd Topologischer Raum (DE-588)4137586-5 gnd |
topic_facet | Topology Topological spaces Combinatorial analysis Topologie Kettenbedingung Topologischer Raum |
url | https://doi.org/10.1017/CBO9780511897337 |
work_keys_str_mv | AT comfortwilliamwistar chainconditionsintopology AT negrepontesstylianos chainconditionsintopology |