Integration and harmonic analysis on compact groups:
These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential u...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1972
|
Schriftenreihe: | London Mathematical Society lecture note series
8 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter–Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (vi, 184 pages) |
ISBN: | 9780511662232 |
DOI: | 10.1017/CBO9780511662232 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942408 | ||
003 | DE-604 | ||
005 | 20190222 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1972 |||| o||u| ||||||eng d | ||
020 | |a 9780511662232 |c Online |9 978-0-511-66223-2 | ||
024 | 7 | |a 10.1017/CBO9780511662232 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662232 | ||
035 | |a (OCoLC)859644979 | ||
035 | |a (DE-599)BVBBV043942408 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.2 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
100 | 1 | |a Edwards, Robert E. |d 1926- |e Verfasser |0 (DE-588)172059607 |4 aut | |
245 | 1 | 0 | |a Integration and harmonic analysis on compact groups |c R.E. Edwards |
246 | 1 | 3 | |a Integration & Harmonic Analysis on Compact Groups |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1972 | |
300 | |a 1 online resource (vi, 184 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 8 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter–Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity | ||
650 | 4 | |a Topological groups | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Integrals, Generalized | |
650 | 0 | 7 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integration |0 (DE-588)4027238-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 1 | 1 | |a Integration |g Mathematik |0 (DE-588)4072852-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 2 | 1 | |a Integration |0 (DE-588)4027238-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-09717-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662232 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351378 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662232 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662232 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885131771904 |
---|---|
any_adam_object | |
author | Edwards, Robert E. 1926- |
author_GND | (DE-588)172059607 |
author_facet | Edwards, Robert E. 1926- |
author_role | aut |
author_sort | Edwards, Robert E. 1926- |
author_variant | r e e re ree |
building | Verbundindex |
bvnumber | BV043942408 |
classification_rvk | SI 320 SK 430 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662232 (OCoLC)859644979 (DE-599)BVBBV043942408 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662232 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03350nmm a2200649zcb4500</leader><controlfield tag="001">BV043942408</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662232</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66223-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662232</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859644979</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942408</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Edwards, Robert E.</subfield><subfield code="d">1926-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172059607</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integration and harmonic analysis on compact groups</subfield><subfield code="c">R.E. Edwards</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Integration & Harmonic Analysis on Compact Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 184 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">8</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter–Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals, Generalized</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integration</subfield><subfield code="0">(DE-588)4027238-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Integration</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4072852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Integration</subfield><subfield code="0">(DE-588)4027238-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-09717-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662232</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351378</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662232</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662232</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942408 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662232 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351378 |
oclc_num | 859644979 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (vi, 184 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Edwards, Robert E. 1926- Verfasser (DE-588)172059607 aut Integration and harmonic analysis on compact groups R.E. Edwards Integration & Harmonic Analysis on Compact Groups Cambridge Cambridge University Press 1972 1 online resource (vi, 184 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 8 Title from publisher's bibliographic system (viewed on 05 Oct 2015) These notes provide a reasonably self-contained introductory survey of certain aspects of harmonic analysis on compact groups. The first part of the book seeks to give a brief account of integration theory on compact Hausdorff spaces. The second, larger part starts from the existence and essential uniqueness of an invariant integral on every compact Hausdorff group. Topics subsequently outlined include representations, the Peter–Weyl theory, positive definite functions, summability and convergence, spans of translates, closed ideals and invariant subspaces, spectral synthesis problems, the Hausdorff-Young theorem, and lacunarity Topological groups Harmonic analysis Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd rswk-swf Kompakte Gruppe (DE-588)4164840-7 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Integration (DE-588)4027238-2 gnd rswk-swf Kompakte Gruppe (DE-588)4164840-7 s Harmonische Analyse (DE-588)4023453-8 s 1\p DE-604 Integration Mathematik (DE-588)4072852-3 s 2\p DE-604 Integration (DE-588)4027238-2 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-09717-8 https://doi.org/10.1017/CBO9780511662232 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Edwards, Robert E. 1926- Integration and harmonic analysis on compact groups Topological groups Harmonic analysis Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd Integration (DE-588)4027238-2 gnd |
subject_GND | (DE-588)4072852-3 (DE-588)4164840-7 (DE-588)4023453-8 (DE-588)4027238-2 |
title | Integration and harmonic analysis on compact groups |
title_alt | Integration & Harmonic Analysis on Compact Groups |
title_auth | Integration and harmonic analysis on compact groups |
title_exact_search | Integration and harmonic analysis on compact groups |
title_full | Integration and harmonic analysis on compact groups R.E. Edwards |
title_fullStr | Integration and harmonic analysis on compact groups R.E. Edwards |
title_full_unstemmed | Integration and harmonic analysis on compact groups R.E. Edwards |
title_short | Integration and harmonic analysis on compact groups |
title_sort | integration and harmonic analysis on compact groups |
topic | Topological groups Harmonic analysis Integrals, Generalized Integration Mathematik (DE-588)4072852-3 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Harmonische Analyse (DE-588)4023453-8 gnd Integration (DE-588)4027238-2 gnd |
topic_facet | Topological groups Harmonic analysis Integrals, Generalized Integration Mathematik Kompakte Gruppe Harmonische Analyse Integration |
url | https://doi.org/10.1017/CBO9780511662232 |
work_keys_str_mv | AT edwardsroberte integrationandharmonicanalysisoncompactgroups AT edwardsroberte integrationharmonicanalysisoncompactgroups |