Analytic semigroups and semilinear initial boundary value problems:
This book provides a careful and accessible exposition of the function analytic approach to initial boundary value problems for semilinear parabolic differential equations. It focuses on the relationship between two interrelated subjects in analysis: analytic semigroups and initial boundary value pr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schriftenreihe: | London Mathematical Society lecture note series
223 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides a careful and accessible exposition of the function analytic approach to initial boundary value problems for semilinear parabolic differential equations. It focuses on the relationship between two interrelated subjects in analysis: analytic semigroups and initial boundary value problems. This semigroup approach can be traced back to the pioneering work of Fujita and Kato on the Navier-Stokes equation. The author studies non homogeneous boundary value problems for second order elliptic differential operators, in the framework of Sobolev spaces of Lp style, which include as particular cases the Dirichlet and Neumann problems, and proves that these boundary value problems provide an example of analytic semigroups in Lp. This book will be a necessary purchase for researchers with an interest in analytic semigroups or initial value problems |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 164 pages) |
ISBN: | 9780511662362 |
DOI: | 10.1017/CBO9780511662362 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942402 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511662362 |c Online |9 978-0-511-66236-2 | ||
024 | 7 | |a 10.1017/CBO9780511662362 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662362 | ||
035 | |a (OCoLC)967601917 | ||
035 | |a (DE-599)BVBBV043942402 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.353 |2 20 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Taira, Kazuaki |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analytic semigroups and semilinear initial boundary value problems |c Kazuaki Taira |
246 | 1 | 3 | |a Analytic Semigroups & Semilinear Initial Boundary Value Problems |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (x, 164 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 223 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Ch. I. Theory of Analytic Semigroups -- Ch. II. Sobolev Imbedding Theorems -- Ch. III. L[superscript p] Theory of Pseudo-Differential Operators -- Ch. IV. L[superscript p] Approach to Elliptic Boundary Value Problems -- Ch. V. Proof of Theorem 1 -- Ch. VI. Proof of Theorem 2 -- Ch. VII. Proof of Theorems 3 and 4 -- Appendix: The Maximum Principle | |
520 | |a This book provides a careful and accessible exposition of the function analytic approach to initial boundary value problems for semilinear parabolic differential equations. It focuses on the relationship between two interrelated subjects in analysis: analytic semigroups and initial boundary value problems. This semigroup approach can be traced back to the pioneering work of Fujita and Kato on the Navier-Stokes equation. The author studies non homogeneous boundary value problems for second order elliptic differential operators, in the framework of Sobolev spaces of Lp style, which include as particular cases the Dirichlet and Neumann problems, and proves that these boundary value problems provide an example of analytic semigroups in Lp. This book will be a necessary purchase for researchers with an interest in analytic semigroups or initial value problems | ||
650 | 4 | |a Differential equations, Parabolic | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Semigroups | |
650 | 0 | 7 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangswertproblem |0 (DE-588)4001991-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Halbgruppe |0 (DE-588)4376792-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Anfangswertproblem |0 (DE-588)4001991-3 |D s |
689 | 0 | 1 | |a Analytische Halbgruppe |0 (DE-588)4376792-8 |D s |
689 | 0 | 2 | |a Elliptischer Differentialoperator |0 (DE-588)4140057-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Analytische Halbgruppe |0 (DE-588)4376792-8 |D s |
689 | 1 | 1 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-55603-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662362 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351372 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662362 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662362 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885123383296 |
---|---|
any_adam_object | |
author | Taira, Kazuaki |
author_facet | Taira, Kazuaki |
author_role | aut |
author_sort | Taira, Kazuaki |
author_variant | k t kt |
building | Verbundindex |
bvnumber | BV043942402 |
classification_rvk | SI 320 SK 560 |
collection | ZDB-20-CBO |
contents | Ch. I. Theory of Analytic Semigroups -- Ch. II. Sobolev Imbedding Theorems -- Ch. III. L[superscript p] Theory of Pseudo-Differential Operators -- Ch. IV. L[superscript p] Approach to Elliptic Boundary Value Problems -- Ch. V. Proof of Theorem 1 -- Ch. VI. Proof of Theorem 2 -- Ch. VII. Proof of Theorems 3 and 4 -- Appendix: The Maximum Principle |
ctrlnum | (ZDB-20-CBO)CR9780511662362 (OCoLC)967601917 (DE-599)BVBBV043942402 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662362 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03849nmm a2200625zcb4500</leader><controlfield tag="001">BV043942402</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662362</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66236-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662362</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942402</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taira, Kazuaki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic semigroups and semilinear initial boundary value problems</subfield><subfield code="c">Kazuaki Taira</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Analytic Semigroups & Semilinear Initial Boundary Value Problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 164 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">223</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ch. I. Theory of Analytic Semigroups -- Ch. II. Sobolev Imbedding Theorems -- Ch. III. L[superscript p] Theory of Pseudo-Differential Operators -- Ch. IV. L[superscript p] Approach to Elliptic Boundary Value Problems -- Ch. V. Proof of Theorem 1 -- Ch. VI. Proof of Theorem 2 -- Ch. VII. Proof of Theorems 3 and 4 -- Appendix: The Maximum Principle</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a careful and accessible exposition of the function analytic approach to initial boundary value problems for semilinear parabolic differential equations. It focuses on the relationship between two interrelated subjects in analysis: analytic semigroups and initial boundary value problems. This semigroup approach can be traced back to the pioneering work of Fujita and Kato on the Navier-Stokes equation. The author studies non homogeneous boundary value problems for second order elliptic differential operators, in the framework of Sobolev spaces of Lp style, which include as particular cases the Dirichlet and Neumann problems, and proves that these boundary value problems provide an example of analytic semigroups in Lp. This book will be a necessary purchase for researchers with an interest in analytic semigroups or initial value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semigroups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Halbgruppe</subfield><subfield code="0">(DE-588)4376792-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analytische Halbgruppe</subfield><subfield code="0">(DE-588)4376792-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elliptischer Differentialoperator</subfield><subfield code="0">(DE-588)4140057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analytische Halbgruppe</subfield><subfield code="0">(DE-588)4376792-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-55603-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662362</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351372</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662362</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662362</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942402 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662362 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351372 |
oclc_num | 967601917 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 164 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Taira, Kazuaki Verfasser aut Analytic semigroups and semilinear initial boundary value problems Kazuaki Taira Analytic Semigroups & Semilinear Initial Boundary Value Problems Cambridge Cambridge University Press 1995 1 online resource (x, 164 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 223 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Ch. I. Theory of Analytic Semigroups -- Ch. II. Sobolev Imbedding Theorems -- Ch. III. L[superscript p] Theory of Pseudo-Differential Operators -- Ch. IV. L[superscript p] Approach to Elliptic Boundary Value Problems -- Ch. V. Proof of Theorem 1 -- Ch. VI. Proof of Theorem 2 -- Ch. VII. Proof of Theorems 3 and 4 -- Appendix: The Maximum Principle This book provides a careful and accessible exposition of the function analytic approach to initial boundary value problems for semilinear parabolic differential equations. It focuses on the relationship between two interrelated subjects in analysis: analytic semigroups and initial boundary value problems. This semigroup approach can be traced back to the pioneering work of Fujita and Kato on the Navier-Stokes equation. The author studies non homogeneous boundary value problems for second order elliptic differential operators, in the framework of Sobolev spaces of Lp style, which include as particular cases the Dirichlet and Neumann problems, and proves that these boundary value problems provide an example of analytic semigroups in Lp. This book will be a necessary purchase for researchers with an interest in analytic semigroups or initial value problems Differential equations, Parabolic Boundary value problems Semigroups Elliptischer Differentialoperator (DE-588)4140057-4 gnd rswk-swf Anfangswertproblem (DE-588)4001991-3 gnd rswk-swf Analytische Halbgruppe (DE-588)4376792-8 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Anfangswertproblem (DE-588)4001991-3 s Analytische Halbgruppe (DE-588)4376792-8 s Elliptischer Differentialoperator (DE-588)4140057-4 s 1\p DE-604 Anfangsrandwertproblem (DE-588)4001990-1 s 2\p DE-604 Erscheint auch als Druckausgabe 978-0-521-55603-3 https://doi.org/10.1017/CBO9780511662362 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Taira, Kazuaki Analytic semigroups and semilinear initial boundary value problems Ch. I. Theory of Analytic Semigroups -- Ch. II. Sobolev Imbedding Theorems -- Ch. III. L[superscript p] Theory of Pseudo-Differential Operators -- Ch. IV. L[superscript p] Approach to Elliptic Boundary Value Problems -- Ch. V. Proof of Theorem 1 -- Ch. VI. Proof of Theorem 2 -- Ch. VII. Proof of Theorems 3 and 4 -- Appendix: The Maximum Principle Differential equations, Parabolic Boundary value problems Semigroups Elliptischer Differentialoperator (DE-588)4140057-4 gnd Anfangswertproblem (DE-588)4001991-3 gnd Analytische Halbgruppe (DE-588)4376792-8 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
subject_GND | (DE-588)4140057-4 (DE-588)4001991-3 (DE-588)4376792-8 (DE-588)4001990-1 |
title | Analytic semigroups and semilinear initial boundary value problems |
title_alt | Analytic Semigroups & Semilinear Initial Boundary Value Problems |
title_auth | Analytic semigroups and semilinear initial boundary value problems |
title_exact_search | Analytic semigroups and semilinear initial boundary value problems |
title_full | Analytic semigroups and semilinear initial boundary value problems Kazuaki Taira |
title_fullStr | Analytic semigroups and semilinear initial boundary value problems Kazuaki Taira |
title_full_unstemmed | Analytic semigroups and semilinear initial boundary value problems Kazuaki Taira |
title_short | Analytic semigroups and semilinear initial boundary value problems |
title_sort | analytic semigroups and semilinear initial boundary value problems |
topic | Differential equations, Parabolic Boundary value problems Semigroups Elliptischer Differentialoperator (DE-588)4140057-4 gnd Anfangswertproblem (DE-588)4001991-3 gnd Analytische Halbgruppe (DE-588)4376792-8 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd |
topic_facet | Differential equations, Parabolic Boundary value problems Semigroups Elliptischer Differentialoperator Anfangswertproblem Analytische Halbgruppe Anfangsrandwertproblem |
url | https://doi.org/10.1017/CBO9780511662362 |
work_keys_str_mv | AT tairakazuaki analyticsemigroupsandsemilinearinitialboundaryvalueproblems AT tairakazuaki analyticsemigroupssemilinearinitialboundaryvalueproblems |