Twistor geometry and field theory:
This book deals with the twistor treatment of certain linear and non-linear partial differential equations. The description in terms of twistors involves algebraic and differential geometry, algebraic topology and results in a new perspective on the properties of space and time. The authors firstly...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book deals with the twistor treatment of certain linear and non-linear partial differential equations. The description in terms of twistors involves algebraic and differential geometry, algebraic topology and results in a new perspective on the properties of space and time. The authors firstly develop the mathematical background, then go on to discuss Yang-Mills fields and gravitational fields in classical language, and in the final part a number of field-theoretic problems are solved. Issued here for the first time in paperback, this self-contained volume should be of use to graduate mathematicians and physicists and research workers in theoretical physics, relativity, and cosmology |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 520 pages) |
ISBN: | 9780511524493 |
DOI: | 10.1017/CBO9780511524493 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942400 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511524493 |c Online |9 978-0-511-52449-3 | ||
024 | 7 | |a 10.1017/CBO9780511524493 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511524493 | ||
035 | |a (OCoLC)967684009 | ||
035 | |a (DE-599)BVBBV043942400 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.33 |2 19eng | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4090 |0 (DE-625)146248: |2 rvk | ||
100 | 1 | |a Ward, R. S. |d 1951- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Twistor geometry and field theory |c R.S. Ward, Raymond O. Wells, Jr |
246 | 1 | 3 | |a Twistor Geometry & Field Theory |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (x, 520 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book deals with the twistor treatment of certain linear and non-linear partial differential equations. The description in terms of twistors involves algebraic and differential geometry, algebraic topology and results in a new perspective on the properties of space and time. The authors firstly develop the mathematical background, then go on to discuss Yang-Mills fields and gravitational fields in classical language, and in the final part a number of field-theoretic problems are solved. Issued here for the first time in paperback, this self-contained volume should be of use to graduate mathematicians and physicists and research workers in theoretical physics, relativity, and cosmology | ||
650 | 4 | |a Twistor theory | |
650 | 4 | |a Integral geometry | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Integral transforms | |
650 | 0 | 7 | |a Integraltransformation |0 (DE-588)4027235-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feldtheorie |0 (DE-588)4016698-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Twistor |0 (DE-588)4186504-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Twistor |0 (DE-588)4186504-2 |D s |
689 | 0 | 1 | |a Feldtheorie |0 (DE-588)4016698-3 |D s |
689 | 0 | 2 | |a Integraltransformation |0 (DE-588)4027235-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wells, R. O. |d 1940- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-26890-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-42268-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511524493 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351370 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511524493 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511524493 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885116043264 |
---|---|
any_adam_object | |
author | Ward, R. S. 1951- |
author_facet | Ward, R. S. 1951- |
author_role | aut |
author_sort | Ward, R. S. 1951- |
author_variant | r s w rs rsw |
building | Verbundindex |
bvnumber | BV043942400 |
classification_rvk | SK 240 SK 950 UO 4090 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511524493 (OCoLC)967684009 (DE-599)BVBBV043942400 |
dewey-full | 512/.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.33 |
dewey-search | 512/.33 |
dewey-sort | 3512 233 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511524493 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03078nmm a2200601zc 4500</leader><controlfield tag="001">BV043942400</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511524493</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52449-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511524493</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511524493</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967684009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942400</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.33</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4090</subfield><subfield code="0">(DE-625)146248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ward, R. S.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Twistor geometry and field theory</subfield><subfield code="c">R.S. Ward, Raymond O. Wells, Jr</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Twistor Geometry & Field Theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 520 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with the twistor treatment of certain linear and non-linear partial differential equations. The description in terms of twistors involves algebraic and differential geometry, algebraic topology and results in a new perspective on the properties of space and time. The authors firstly develop the mathematical background, then go on to discuss Yang-Mills fields and gravitational fields in classical language, and in the final part a number of field-theoretic problems are solved. Issued here for the first time in paperback, this self-contained volume should be of use to graduate mathematicians and physicists and research workers in theoretical physics, relativity, and cosmology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twistor theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral transforms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraltransformation</subfield><subfield code="0">(DE-588)4027235-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Twistor</subfield><subfield code="0">(DE-588)4186504-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Feldtheorie</subfield><subfield code="0">(DE-588)4016698-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Integraltransformation</subfield><subfield code="0">(DE-588)4027235-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wells, R. O.</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-26890-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-42268-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511524493</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351370</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511524493</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511524493</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942400 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511524493 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351370 |
oclc_num | 967684009 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 520 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Ward, R. S. 1951- Verfasser aut Twistor geometry and field theory R.S. Ward, Raymond O. Wells, Jr Twistor Geometry & Field Theory Cambridge Cambridge University Press 1990 1 online resource (x, 520 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book deals with the twistor treatment of certain linear and non-linear partial differential equations. The description in terms of twistors involves algebraic and differential geometry, algebraic topology and results in a new perspective on the properties of space and time. The authors firstly develop the mathematical background, then go on to discuss Yang-Mills fields and gravitational fields in classical language, and in the final part a number of field-theoretic problems are solved. Issued here for the first time in paperback, this self-contained volume should be of use to graduate mathematicians and physicists and research workers in theoretical physics, relativity, and cosmology Twistor theory Integral geometry Field theory (Physics) Integral transforms Integraltransformation (DE-588)4027235-7 gnd rswk-swf Feldtheorie (DE-588)4016698-3 gnd rswk-swf Twistor (DE-588)4186504-2 gnd rswk-swf Twistor (DE-588)4186504-2 s Feldtheorie (DE-588)4016698-3 s Integraltransformation (DE-588)4027235-7 s 1\p DE-604 Wells, R. O. 1940- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-26890-5 Erscheint auch als Druckausgabe 978-0-521-42268-0 https://doi.org/10.1017/CBO9780511524493 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ward, R. S. 1951- Twistor geometry and field theory Twistor theory Integral geometry Field theory (Physics) Integral transforms Integraltransformation (DE-588)4027235-7 gnd Feldtheorie (DE-588)4016698-3 gnd Twistor (DE-588)4186504-2 gnd |
subject_GND | (DE-588)4027235-7 (DE-588)4016698-3 (DE-588)4186504-2 |
title | Twistor geometry and field theory |
title_alt | Twistor Geometry & Field Theory |
title_auth | Twistor geometry and field theory |
title_exact_search | Twistor geometry and field theory |
title_full | Twistor geometry and field theory R.S. Ward, Raymond O. Wells, Jr |
title_fullStr | Twistor geometry and field theory R.S. Ward, Raymond O. Wells, Jr |
title_full_unstemmed | Twistor geometry and field theory R.S. Ward, Raymond O. Wells, Jr |
title_short | Twistor geometry and field theory |
title_sort | twistor geometry and field theory |
topic | Twistor theory Integral geometry Field theory (Physics) Integral transforms Integraltransformation (DE-588)4027235-7 gnd Feldtheorie (DE-588)4016698-3 gnd Twistor (DE-588)4186504-2 gnd |
topic_facet | Twistor theory Integral geometry Field theory (Physics) Integral transforms Integraltransformation Feldtheorie Twistor |
url | https://doi.org/10.1017/CBO9780511524493 |
work_keys_str_mv | AT wardrs twistorgeometryandfieldtheory AT wellsro twistorgeometryandfieldtheory AT wardrs twistorgeometryfieldtheory AT wellsro twistorgeometryfieldtheory |