Explicit Brauer induction: with applications to algebra and number theory
Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1994
|
Schriftenreihe: | Cambridge studies in advanced mathematics
40 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-92 DE-355 DE-706 Volltext |
Zusammenfassung: | Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to re-prove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver–Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (xii, 409 Seiten) |
ISBN: | 9780511600746 |
DOI: | 10.1017/CBO9780511600746 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942380 | ||
003 | DE-604 | ||
005 | 20240926 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1994 |||| o||u| ||||||eng d | ||
020 | |a 9780511600746 |c Online |9 978-0-511-60074-6 | ||
024 | 7 | |a 10.1017/CBO9780511600746 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600746 | ||
035 | |a (OCoLC)849886820 | ||
035 | |a (DE-599)BVBBV043942380 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 |a DE-706 | ||
082 | 0 | |a 512/.2 |2 20 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Snaith, Victor P. |d 1944- |e Verfasser |0 (DE-588)108351882 |4 aut | |
245 | 1 | 0 | |a Explicit Brauer induction |b with applications to algebra and number theory |c Victor P. Snaith |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1994 | |
300 | |a 1 Online-Ressource (xii, 409 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 40 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to re-prove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver–Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings | ||
650 | 4 | |a Brauer groups | |
650 | 4 | |a Representations of groups | |
650 | 0 | 7 | |a Brauer-Gruppe |0 (DE-588)4146488-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Brauer-Gruppe |0 (DE-588)4146488-6 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-46015-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-17273-8 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 40 |w (DE-604)BV044781283 |9 40 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600746 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029351350 | |
966 | e | |u https://doi.org/10.1017/CBO9780511600746 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600746 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600746 |l DE-355 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600746 |l DE-706 |p ZDB-20-CBO |q UBY_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1811275014278742016 |
---|---|
adam_text | |
any_adam_object | |
author | Snaith, Victor P. 1944- |
author_GND | (DE-588)108351882 |
author_facet | Snaith, Victor P. 1944- |
author_role | aut |
author_sort | Snaith, Victor P. 1944- |
author_variant | v p s vp vps |
building | Verbundindex |
bvnumber | BV043942380 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511600746 (OCoLC)849886820 (DE-599)BVBBV043942380 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600746 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV043942380</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240926</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600746</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60074-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600746</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849886820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942380</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Snaith, Victor P.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108351882</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit Brauer induction</subfield><subfield code="b">with applications to algebra and number theory</subfield><subfield code="c">Victor P. Snaith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 409 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to re-prove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver–Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brauer groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brauer-Gruppe</subfield><subfield code="0">(DE-588)4146488-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Brauer-Gruppe</subfield><subfield code="0">(DE-588)4146488-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-46015-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-17273-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">40</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">40</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600746</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351350</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600746</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600746</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600746</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600746</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBY_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942380 |
illustrated | Not Illustrated |
indexdate | 2024-09-26T16:01:01Z |
institution | BVB |
isbn | 9780511600746 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351350 |
oclc_num | 849886820 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-706 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 DE-706 |
physical | 1 Online-Ressource (xii, 409 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) ZDB-20-CBO UBY_PDA_CBO_Kauf |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Snaith, Victor P. 1944- Verfasser (DE-588)108351882 aut Explicit Brauer induction with applications to algebra and number theory Victor P. Snaith Cambridge Cambridge University Press 1994 1 Online-Ressource (xii, 409 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 40 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Explicit Brauer Induction is an important technique in algebra, discovered by the author in 1986. It solves an old problem, giving a canonical formula for Brauer's induction theorem. In this 1994 book it is derived algebraically, following a method of R. Boltje - thereby making the technique, previously topological, accessible to algebraists. Once developed, the technique is used, by way of illustration, to re-prove some important known results in new ways and to settle some outstanding problems. As with Brauer's original result, the canonical formula can be expected to have numerous applications and this book is designed to introduce research algebraists to its possibilities. For example, the technique gives an improved construction of the Oliver–Taylor group-ring logarithm, which enables the author to study more effectively algebraic and number-theoretic questions connected with class-groups of rings Brauer groups Representations of groups Brauer-Gruppe (DE-588)4146488-6 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Brauer-Gruppe (DE-588)4146488-6 s Darstellungstheorie (DE-588)4148816-7 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-46015-6 Erscheint auch als Druck-Ausgabe 978-0-521-17273-8 Cambridge studies in advanced mathematics 40 (DE-604)BV044781283 40 https://doi.org/10.1017/CBO9780511600746 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Snaith, Victor P. 1944- Explicit Brauer induction with applications to algebra and number theory Cambridge studies in advanced mathematics Brauer groups Representations of groups Brauer-Gruppe (DE-588)4146488-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4146488-6 (DE-588)4148816-7 |
title | Explicit Brauer induction with applications to algebra and number theory |
title_auth | Explicit Brauer induction with applications to algebra and number theory |
title_exact_search | Explicit Brauer induction with applications to algebra and number theory |
title_full | Explicit Brauer induction with applications to algebra and number theory Victor P. Snaith |
title_fullStr | Explicit Brauer induction with applications to algebra and number theory Victor P. Snaith |
title_full_unstemmed | Explicit Brauer induction with applications to algebra and number theory Victor P. Snaith |
title_short | Explicit Brauer induction |
title_sort | explicit brauer induction with applications to algebra and number theory |
title_sub | with applications to algebra and number theory |
topic | Brauer groups Representations of groups Brauer-Gruppe (DE-588)4146488-6 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Brauer groups Representations of groups Brauer-Gruppe Darstellungstheorie |
url | https://doi.org/10.1017/CBO9780511600746 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT snaithvictorp explicitbrauerinductionwithapplicationstoalgebraandnumbertheory |