Absolute measurable spaces:
Absolute measurable space and absolute null space are very old topological notions, developed from well-known facts of descriptive set theory, topology, Borel measure theory and analysis. This monograph systematically develops and returns to the topological and geometrical origins of these notions....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 120 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Absolute measurable space and absolute null space are very old topological notions, developed from well-known facts of descriptive set theory, topology, Borel measure theory and analysis. This monograph systematically develops and returns to the topological and geometrical origins of these notions. Motivating the development of the exposition are the action of the group of homeomorphisms of a space on Borel measures, the Oxtoby-Ulam theorem on Lebesgue-like measures on the unit cube, and the extensions of this theorem to many other topological spaces. Existence of uncountable absolute null space, extension of the Purves theorem and recent advances on homeomorphic Borel probability measures on the Cantor space, are among the many topics discussed. A brief discussion of set-theoretic results on absolute null space is given, and a four-part appendix aids the reader with topological dimension theory, Hausdorff measure and Hausdorff dimension, and geometric measure theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xii, 274 pages) |
ISBN: | 9780511721380 |
DOI: | 10.1017/CBO9780511721380 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942367 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511721380 |c Online |9 978-0-511-72138-0 | ||
024 | 7 | |a 10.1017/CBO9780511721380 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721380 | ||
035 | |a (OCoLC)967697486 | ||
035 | |a (DE-599)BVBBV043942367 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.3 |2 22 | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
100 | 1 | |a Nishiura, Togo |d 1931- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Absolute measurable spaces |c Togo Nishiura |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (xii, 274 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 120 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a The absolute property -- The universally measurable property -- The homeomorphism group of X -- Real-valued functions -- Hausdorff measure and dimension -- Martin axiom -- Appendix A. Preliminary material -- Appendix B. Probability theoretic approach -- Appendix C. Cantor spaces -- Appendix D. Dimensions and measures | |
520 | |a Absolute measurable space and absolute null space are very old topological notions, developed from well-known facts of descriptive set theory, topology, Borel measure theory and analysis. This monograph systematically develops and returns to the topological and geometrical origins of these notions. Motivating the development of the exposition are the action of the group of homeomorphisms of a space on Borel measures, the Oxtoby-Ulam theorem on Lebesgue-like measures on the unit cube, and the extensions of this theorem to many other topological spaces. Existence of uncountable absolute null space, extension of the Purves theorem and recent advances on homeomorphic Borel probability measures on the Cantor space, are among the many topics discussed. A brief discussion of set-theoretic results on absolute null space is given, and a four-part appendix aids the reader with topological dimension theory, Hausdorff measure and Hausdorff dimension, and geometric measure theory | ||
650 | 4 | |a Topological spaces | |
650 | 0 | 7 | |a Sigma-Algebra |0 (DE-588)4181252-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hausdorff-Maß |0 (DE-588)4159238-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßraum |0 (DE-588)4169057-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sigma-Algebra |0 (DE-588)4181252-9 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Maßraum |0 (DE-588)4169057-6 |D s |
689 | 0 | 3 | |a Hausdorff-Maß |0 (DE-588)4159238-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87556-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721380 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351337 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721380 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721380 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885072003072 |
---|---|
any_adam_object | |
author | Nishiura, Togo 1931- |
author_facet | Nishiura, Togo 1931- |
author_role | aut |
author_sort | Nishiura, Togo 1931- |
author_variant | t n tn |
building | Verbundindex |
bvnumber | BV043942367 |
classification_rvk | SK 280 |
collection | ZDB-20-CBO |
contents | The absolute property -- The universally measurable property -- The homeomorphism group of X -- Real-valued functions -- Hausdorff measure and dimension -- Martin axiom -- Appendix A. Preliminary material -- Appendix B. Probability theoretic approach -- Appendix C. Cantor spaces -- Appendix D. Dimensions and measures |
ctrlnum | (ZDB-20-CBO)CR9780511721380 (OCoLC)967697486 (DE-599)BVBBV043942367 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721380 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03424nmm a2200541zcb4500</leader><controlfield tag="001">BV043942367</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721380</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72138-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721380</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942367</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nishiura, Togo</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Absolute measurable spaces</subfield><subfield code="c">Togo Nishiura</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 274 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 120</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The absolute property -- The universally measurable property -- The homeomorphism group of X -- Real-valued functions -- Hausdorff measure and dimension -- Martin axiom -- Appendix A. Preliminary material -- Appendix B. Probability theoretic approach -- Appendix C. Cantor spaces -- Appendix D. Dimensions and measures</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Absolute measurable space and absolute null space are very old topological notions, developed from well-known facts of descriptive set theory, topology, Borel measure theory and analysis. This monograph systematically develops and returns to the topological and geometrical origins of these notions. Motivating the development of the exposition are the action of the group of homeomorphisms of a space on Borel measures, the Oxtoby-Ulam theorem on Lebesgue-like measures on the unit cube, and the extensions of this theorem to many other topological spaces. Existence of uncountable absolute null space, extension of the Purves theorem and recent advances on homeomorphic Borel probability measures on the Cantor space, are among the many topics discussed. A brief discussion of set-theoretic results on absolute null space is given, and a four-part appendix aids the reader with topological dimension theory, Hausdorff measure and Hausdorff dimension, and geometric measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sigma-Algebra</subfield><subfield code="0">(DE-588)4181252-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hausdorff-Maß</subfield><subfield code="0">(DE-588)4159238-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sigma-Algebra</subfield><subfield code="0">(DE-588)4181252-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Hausdorff-Maß</subfield><subfield code="0">(DE-588)4159238-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87556-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721380</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351337</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721380</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721380</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942367 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511721380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351337 |
oclc_num | 967697486 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 274 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Nishiura, Togo 1931- Verfasser aut Absolute measurable spaces Togo Nishiura Cambridge Cambridge University Press 2008 1 online resource (xii, 274 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 120 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The absolute property -- The universally measurable property -- The homeomorphism group of X -- Real-valued functions -- Hausdorff measure and dimension -- Martin axiom -- Appendix A. Preliminary material -- Appendix B. Probability theoretic approach -- Appendix C. Cantor spaces -- Appendix D. Dimensions and measures Absolute measurable space and absolute null space are very old topological notions, developed from well-known facts of descriptive set theory, topology, Borel measure theory and analysis. This monograph systematically develops and returns to the topological and geometrical origins of these notions. Motivating the development of the exposition are the action of the group of homeomorphisms of a space on Borel measures, the Oxtoby-Ulam theorem on Lebesgue-like measures on the unit cube, and the extensions of this theorem to many other topological spaces. Existence of uncountable absolute null space, extension of the Purves theorem and recent advances on homeomorphic Borel probability measures on the Cantor space, are among the many topics discussed. A brief discussion of set-theoretic results on absolute null space is given, and a four-part appendix aids the reader with topological dimension theory, Hausdorff measure and Hausdorff dimension, and geometric measure theory Topological spaces Sigma-Algebra (DE-588)4181252-9 gnd rswk-swf Hausdorff-Maß (DE-588)4159238-4 gnd rswk-swf Maßraum (DE-588)4169057-6 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Sigma-Algebra (DE-588)4181252-9 s Topologie (DE-588)4060425-1 s Maßraum (DE-588)4169057-6 s Hausdorff-Maß (DE-588)4159238-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-87556-1 https://doi.org/10.1017/CBO9780511721380 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nishiura, Togo 1931- Absolute measurable spaces The absolute property -- The universally measurable property -- The homeomorphism group of X -- Real-valued functions -- Hausdorff measure and dimension -- Martin axiom -- Appendix A. Preliminary material -- Appendix B. Probability theoretic approach -- Appendix C. Cantor spaces -- Appendix D. Dimensions and measures Topological spaces Sigma-Algebra (DE-588)4181252-9 gnd Hausdorff-Maß (DE-588)4159238-4 gnd Maßraum (DE-588)4169057-6 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4181252-9 (DE-588)4159238-4 (DE-588)4169057-6 (DE-588)4060425-1 |
title | Absolute measurable spaces |
title_auth | Absolute measurable spaces |
title_exact_search | Absolute measurable spaces |
title_full | Absolute measurable spaces Togo Nishiura |
title_fullStr | Absolute measurable spaces Togo Nishiura |
title_full_unstemmed | Absolute measurable spaces Togo Nishiura |
title_short | Absolute measurable spaces |
title_sort | absolute measurable spaces |
topic | Topological spaces Sigma-Algebra (DE-588)4181252-9 gnd Hausdorff-Maß (DE-588)4159238-4 gnd Maßraum (DE-588)4169057-6 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Topological spaces Sigma-Algebra Hausdorff-Maß Maßraum Topologie |
url | https://doi.org/10.1017/CBO9780511721380 |
work_keys_str_mv | AT nishiuratogo absolutemeasurablespaces |