Spectral asymptotics in the semi-classical limit:
Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1999
|
Schriftenreihe: | London Mathematical Society lecture note series
268 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 227 pages) |
ISBN: | 9780511662195 |
DOI: | 10.1017/CBO9780511662195 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942348 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780511662195 |c Online |9 978-0-511-66219-5 | ||
024 | 7 | |a 10.1017/CBO9780511662195 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662195 | ||
035 | |a (OCoLC)967776398 | ||
035 | |a (DE-599)BVBBV043942348 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.15/57222 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
100 | 1 | |a Dimassi, Mouez |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral asymptotics in the semi-classical limit |c Mouez Dimassi, Johannes Sjöstrand |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1999 | |
300 | |a 1 online resource (xi, 227 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 268 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Local symplectic geometry |t The WKB-method |t The WKB-method for a potential minimum |t Self-adjoint operators |t The method of stationary phase |t Tunnel effect and interaction matrix |t @h-pseudodifferential operators |t Functional calculus for pseudodifferential operators |t Trace class operators and applications of the functional calculus |t More precise spectral asymptotics for non-critical Hamiltonians |t Improvement when the periodic trajectories form a set of measure 0 |t A more general study of the trace |t Spectral theory for perturbed periodic problems |t Normal forms for some scalar pseudodifferential operators |t Spectrum of operators with periodic bicharacteristics |
520 | |a Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Microlocal analysis | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a WKB-Methode |0 (DE-588)4190133-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a WKB-Methode |0 (DE-588)4190133-2 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | 2 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 0 | 3 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 1 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 1 | 2 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 1 | 3 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Sjöstrand, J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-66544-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662195 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351318 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662195 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662195 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176885018525696 |
---|---|
any_adam_object | |
author | Dimassi, Mouez |
author_facet | Dimassi, Mouez |
author_role | aut |
author_sort | Dimassi, Mouez |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043942348 |
classification_rvk | SI 320 SK 540 SK 620 |
collection | ZDB-20-CBO |
contents | Local symplectic geometry The WKB-method The WKB-method for a potential minimum Self-adjoint operators The method of stationary phase Tunnel effect and interaction matrix @h-pseudodifferential operators Functional calculus for pseudodifferential operators Trace class operators and applications of the functional calculus More precise spectral asymptotics for non-critical Hamiltonians Improvement when the periodic trajectories form a set of measure 0 A more general study of the trace Spectral theory for perturbed periodic problems Normal forms for some scalar pseudodifferential operators Spectrum of operators with periodic bicharacteristics |
ctrlnum | (ZDB-20-CBO)CR9780511662195 (OCoLC)967776398 (DE-599)BVBBV043942348 |
dewey-full | 530.15/57222 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/57222 |
dewey-search | 530.15/57222 |
dewey-sort | 3530.15 557222 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511662195 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04711nmm a2200733zcb4500</leader><controlfield tag="001">BV043942348</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662195</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66219-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662195</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967776398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942348</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/57222</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimassi, Mouez</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral asymptotics in the semi-classical limit</subfield><subfield code="c">Mouez Dimassi, Johannes Sjöstrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 227 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">268</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Local symplectic geometry</subfield><subfield code="t">The WKB-method</subfield><subfield code="t">The WKB-method for a potential minimum</subfield><subfield code="t">Self-adjoint operators</subfield><subfield code="t">The method of stationary phase</subfield><subfield code="t">Tunnel effect and interaction matrix</subfield><subfield code="t">@h-pseudodifferential operators</subfield><subfield code="t">Functional calculus for pseudodifferential operators</subfield><subfield code="t">Trace class operators and applications of the functional calculus</subfield><subfield code="t">More precise spectral asymptotics for non-critical Hamiltonians</subfield><subfield code="t">Improvement when the periodic trajectories form a set of measure 0</subfield><subfield code="t">A more general study of the trace</subfield><subfield code="t">Spectral theory for perturbed periodic problems</subfield><subfield code="t">Normal forms for some scalar pseudodifferential operators</subfield><subfield code="t">Spectrum of operators with periodic bicharacteristics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microlocal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">WKB-Methode</subfield><subfield code="0">(DE-588)4190133-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sjöstrand, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-66544-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662195</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351318</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662195</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662195</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942348 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662195 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351318 |
oclc_num | 967776398 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 227 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Dimassi, Mouez Verfasser aut Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand Cambridge Cambridge University Press 1999 1 online resource (xi, 227 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 268 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Local symplectic geometry The WKB-method The WKB-method for a potential minimum Self-adjoint operators The method of stationary phase Tunnel effect and interaction matrix @h-pseudodifferential operators Functional calculus for pseudodifferential operators Trace class operators and applications of the functional calculus More precise spectral asymptotics for non-critical Hamiltonians Improvement when the periodic trajectories form a set of measure 0 A more general study of the trace Spectral theory for perturbed periodic problems Normal forms for some scalar pseudodifferential operators Spectrum of operators with periodic bicharacteristics Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf WKB-Methode (DE-588)4190133-2 gnd rswk-swf Quasiklassische Näherung (DE-588)4296820-3 gnd rswk-swf Mikrolokale Analysis (DE-588)4169832-0 gnd rswk-swf WKB-Methode (DE-588)4190133-2 s Spektraltheorie (DE-588)4116561-5 s Pseudodifferentialoperator (DE-588)4047640-6 s Mikrolokale Analysis (DE-588)4169832-0 s 1\p DE-604 Quasiklassische Näherung (DE-588)4296820-3 s 2\p DE-604 Sjöstrand, J. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-66544-5 https://doi.org/10.1017/CBO9780511662195 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dimassi, Mouez Spectral asymptotics in the semi-classical limit Local symplectic geometry The WKB-method The WKB-method for a potential minimum Self-adjoint operators The method of stationary phase Tunnel effect and interaction matrix @h-pseudodifferential operators Functional calculus for pseudodifferential operators Trace class operators and applications of the functional calculus More precise spectral asymptotics for non-critical Hamiltonians Improvement when the periodic trajectories form a set of measure 0 A more general study of the trace Spectral theory for perturbed periodic problems Normal forms for some scalar pseudodifferential operators Spectrum of operators with periodic bicharacteristics Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Spektraltheorie (DE-588)4116561-5 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd WKB-Methode (DE-588)4190133-2 gnd Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4047640-6 (DE-588)4190133-2 (DE-588)4296820-3 (DE-588)4169832-0 |
title | Spectral asymptotics in the semi-classical limit |
title_alt | Local symplectic geometry The WKB-method The WKB-method for a potential minimum Self-adjoint operators The method of stationary phase Tunnel effect and interaction matrix @h-pseudodifferential operators Functional calculus for pseudodifferential operators Trace class operators and applications of the functional calculus More precise spectral asymptotics for non-critical Hamiltonians Improvement when the periodic trajectories form a set of measure 0 A more general study of the trace Spectral theory for perturbed periodic problems Normal forms for some scalar pseudodifferential operators Spectrum of operators with periodic bicharacteristics |
title_auth | Spectral asymptotics in the semi-classical limit |
title_exact_search | Spectral asymptotics in the semi-classical limit |
title_full | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_fullStr | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_full_unstemmed | Spectral asymptotics in the semi-classical limit Mouez Dimassi, Johannes Sjöstrand |
title_short | Spectral asymptotics in the semi-classical limit |
title_sort | spectral asymptotics in the semi classical limit |
topic | Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Spektraltheorie (DE-588)4116561-5 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd WKB-Methode (DE-588)4190133-2 gnd Quasiklassische Näherung (DE-588)4296820-3 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd |
topic_facet | Mathematische Physik Quantentheorie Microlocal analysis Quantum theory Approximation theory Spectral theory (Mathematics) Mathematical physics Spektraltheorie Pseudodifferentialoperator WKB-Methode Quasiklassische Näherung Mikrolokale Analysis |
url | https://doi.org/10.1017/CBO9780511662195 |
work_keys_str_mv | AT dimassimouez spectralasymptoticsinthesemiclassicallimit AT sjostrandj spectralasymptoticsinthesemiclassicallimit |