Affine sets and affine groups:
In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the g...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1980
|
Schriftenreihe: | London Mathematical Society lecture note series
39 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 285 pages) |
ISBN: | 9781107325456 |
DOI: | 10.1017/CBO9781107325456 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942322 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1980 |||| o||u| ||||||eng d | ||
020 | |a 9781107325456 |c Online |9 978-1-107-32545-6 | ||
024 | 7 | |a 10.1017/CBO9781107325456 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107325456 | ||
035 | |a (OCoLC)967602027 | ||
035 | |a (DE-599)BVBBV043942322 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.4 |2 18eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Northcott, D. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Affine sets and affine groups |c D.G. Northcott |
246 | 1 | 3 | |a Affine Sets & Affine Groups |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1980 | |
300 | |a 1 online resource (x, 285 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 39 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups | ||
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Linear algebraic groups | |
650 | 4 | |a Set theory | |
650 | 0 | 7 | |a Affine Geometrie |0 (DE-588)4141566-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Affine Geometrie |0 (DE-588)4141566-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-22909-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107325456 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351292 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107325456 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107325456 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884980776960 |
---|---|
any_adam_object | |
author | Northcott, D. G. |
author_facet | Northcott, D. G. |
author_role | aut |
author_sort | Northcott, D. G. |
author_variant | d g n dg dgn |
building | Verbundindex |
bvnumber | BV043942322 |
classification_rvk | SI 320 SK 380 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107325456 (OCoLC)967602027 (DE-599)BVBBV043942322 |
dewey-full | 516/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.4 |
dewey-search | 516/.4 |
dewey-sort | 3516 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107325456 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02743nmm a2200505zcb4500</leader><controlfield tag="001">BV043942322</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325456</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32545-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107325456</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107325456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942322</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.4</subfield><subfield code="2">18eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Northcott, D. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine sets and affine groups</subfield><subfield code="c">D.G. Northcott</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Affine Sets & Affine Groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 285 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Affine Geometrie</subfield><subfield code="0">(DE-588)4141566-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Affine Geometrie</subfield><subfield code="0">(DE-588)4141566-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-22909-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107325456</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351292</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325456</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325456</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942322 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781107325456 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351292 |
oclc_num | 967602027 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 285 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Northcott, D. G. Verfasser aut Affine sets and affine groups D.G. Northcott Affine Sets & Affine Groups Cambridge Cambridge University Press 1980 1 online resource (x, 285 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 39 Title from publisher's bibliographic system (viewed on 05 Oct 2015) In these notes, first published in 1980, Professor Northcott provides a self-contained introduction to the theory of affine algebraic groups for mathematicians with a basic knowledge of communicative algebra and field theory. The book divides into two parts. The first four chapters contain all the geometry needed for the second half of the book which deals with affine groups. Alternatively the first part provides a sure introduction to the foundations of algebraic geometry. Any affine group has an associated Lie algebra. In the last two chapters, the author studies these algebras and shows how, in certain important cases, their properties can be transferred back to the groups from which they arose. These notes provide a clear and carefully written introduction to algebraic geometry and algebraic groups Geometry, Algebraic Linear algebraic groups Set theory Affine Geometrie (DE-588)4141566-8 gnd rswk-swf Affine Geometrie (DE-588)4141566-8 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-22909-8 https://doi.org/10.1017/CBO9781107325456 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Northcott, D. G. Affine sets and affine groups Geometry, Algebraic Linear algebraic groups Set theory Affine Geometrie (DE-588)4141566-8 gnd |
subject_GND | (DE-588)4141566-8 |
title | Affine sets and affine groups |
title_alt | Affine Sets & Affine Groups |
title_auth | Affine sets and affine groups |
title_exact_search | Affine sets and affine groups |
title_full | Affine sets and affine groups D.G. Northcott |
title_fullStr | Affine sets and affine groups D.G. Northcott |
title_full_unstemmed | Affine sets and affine groups D.G. Northcott |
title_short | Affine sets and affine groups |
title_sort | affine sets and affine groups |
topic | Geometry, Algebraic Linear algebraic groups Set theory Affine Geometrie (DE-588)4141566-8 gnd |
topic_facet | Geometry, Algebraic Linear algebraic groups Set theory Affine Geometrie |
url | https://doi.org/10.1017/CBO9781107325456 |
work_keys_str_mv | AT northcottdg affinesetsandaffinegroups AT northcottdg affinesetsaffinegroups |