ZZ/2, homotopy theory:
This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1980
|
Schriftenreihe: | London Mathematical Society lecture note series
44 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (128 pages) |
ISBN: | 9780511662690 |
DOI: | 10.1017/CBO9780511662690 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942314 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1980 |||| o||u| ||||||eng d | ||
020 | |a 9780511662690 |c Online |9 978-0-511-66269-0 | ||
024 | 7 | |a 10.1017/CBO9780511662690 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662690 | ||
035 | |a (OCoLC)967601402 | ||
035 | |a (DE-599)BVBBV043942314 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.24 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Crabb, M. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a ZZ/2, homotopy theory |c M.C. Crabb |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1980 | |
300 | |a 1 online resource (128 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 44 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest | ||
650 | 4 | |a Homotopy theory | |
650 | 4 | |a Group theory | |
650 | 4 | |a Symmetry | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-28051-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662690 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351284 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511662690 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662690 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884972388352 |
---|---|
any_adam_object | |
author | Crabb, M. C. |
author_facet | Crabb, M. C. |
author_role | aut |
author_sort | Crabb, M. C. |
author_variant | m c c mc mcc |
building | Verbundindex |
bvnumber | BV043942314 |
classification_rvk | SI 320 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662690 (OCoLC)967601402 (DE-599)BVBBV043942314 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662690 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02628nmm a2200481zcb4500</leader><controlfield tag="001">BV043942314</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662690</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66269-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662690</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967601402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crabb, M. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ZZ/2, homotopy theory</subfield><subfield code="c">M.C. Crabb</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (128 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">44</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28051-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662690</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351284</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662690</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662690</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942314 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662690 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351284 |
oclc_num | 967601402 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (128 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Crabb, M. C. Verfasser aut ZZ/2, homotopy theory M.C. Crabb Cambridge Cambridge University Press 1980 1 online resource (128 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 44 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This account is a study of twofold symmetry in algebraic topology. The author discusses specifically the antipodal involution of a real vector bundle - multiplication by - I in each fibre; doubling and squaring operations; the symmetry of bilinear forms and Hermitian K-theory. In spite of its title, this is not a treatise on equivariant topology; rather it is the language in which to describe the symmetry. Familiarity with the basic concepts of algebraic topology (homotopy, stable homotopy, homology, K-theory, the Pontrjagin—Thom transfer construction) is assumed. Detailed proofs are not given (the expert reader will be able to supply them when necessary) yet nowhere is credibility lost. Thus the approach is elementary enough to provide an introduction to the subject suitable for graduate students although research workers will find here much of interest Homotopy theory Group theory Symmetry Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 s DE-604 Erscheint auch als Druckausgabe 978-0-521-28051-8 https://doi.org/10.1017/CBO9780511662690 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Crabb, M. C. ZZ/2, homotopy theory Homotopy theory Group theory Symmetry Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4128142-1 |
title | ZZ/2, homotopy theory |
title_auth | ZZ/2, homotopy theory |
title_exact_search | ZZ/2, homotopy theory |
title_full | ZZ/2, homotopy theory M.C. Crabb |
title_fullStr | ZZ/2, homotopy theory M.C. Crabb |
title_full_unstemmed | ZZ/2, homotopy theory M.C. Crabb |
title_short | ZZ/2, homotopy theory |
title_sort | zz 2 homotopy theory |
topic | Homotopy theory Group theory Symmetry Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopy theory Group theory Symmetry Homotopietheorie |
url | https://doi.org/10.1017/CBO9780511662690 |
work_keys_str_mv | AT crabbmc zz2homotopytheory |