Coding the universe:
Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another mo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1982
|
Schriftenreihe: | London Mathematical Society lecture note series
47 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Gödels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (353 pages) |
ISBN: | 9780511629198 |
DOI: | 10.1017/CBO9780511629198 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942313 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1982 |||| o||u| ||||||eng d | ||
020 | |a 9780511629198 |c Online |9 978-0-511-62919-8 | ||
024 | 7 | |a 10.1017/CBO9780511629198 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511629198 | ||
035 | |a (OCoLC)992860003 | ||
035 | |a (DE-599)BVBBV043942313 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.3/22 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 155 |0 (DE-625)143219: |2 rvk | ||
100 | 1 | |a Beller, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Coding the universe |c A. Beller, R. Jensen, P. Welch |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1982 | |
300 | |a 1 online resource (353 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 47 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Gödels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account | ||
650 | 4 | |a Axiomatic set theory | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 0 | 7 | |a Zermelo-Fraenkel-Axiome |0 (DE-588)4190747-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zermelo-Fraenkel-Axiome |0 (DE-588)4190747-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Jensen, Ronald Björn |e Sonstige |4 oth | |
700 | 1 | |a Welch, P. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-28040-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511629198 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351283 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511629198 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511629198 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884968194048 |
---|---|
any_adam_object | |
author | Beller, A. |
author_facet | Beller, A. |
author_role | aut |
author_sort | Beller, A. |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV043942313 |
classification_rvk | SI 320 SK 130 SK 155 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511629198 (OCoLC)992860003 (DE-599)BVBBV043942313 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511629198 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02641nmm a2200517zcb4500</leader><controlfield tag="001">BV043942313</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629198</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62919-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511629198</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511629198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992860003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942313</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="0">(DE-625)143219:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beller, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coding the universe</subfield><subfield code="c">A. Beller, R. Jensen, P. Welch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (353 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">47</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Gödels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiomatic set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zermelo-Fraenkel-Axiome</subfield><subfield code="0">(DE-588)4190747-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zermelo-Fraenkel-Axiome</subfield><subfield code="0">(DE-588)4190747-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jensen, Ronald Björn</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Welch, P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28040-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511629198</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351283</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629198</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629198</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942313 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511629198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351283 |
oclc_num | 992860003 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (353 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Beller, A. Verfasser aut Coding the universe A. Beller, R. Jensen, P. Welch Cambridge Cambridge University Press 1982 1 online resource (353 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 47 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Gödels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account Axiomatic set theory Logic, Symbolic and mathematical Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd rswk-swf Zermelo-Fraenkel-Axiome (DE-588)4190747-4 s 1\p DE-604 Jensen, Ronald Björn Sonstige oth Welch, P. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-28040-2 https://doi.org/10.1017/CBO9780511629198 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Beller, A. Coding the universe Axiomatic set theory Logic, Symbolic and mathematical Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd |
subject_GND | (DE-588)4190747-4 |
title | Coding the universe |
title_auth | Coding the universe |
title_exact_search | Coding the universe |
title_full | Coding the universe A. Beller, R. Jensen, P. Welch |
title_fullStr | Coding the universe A. Beller, R. Jensen, P. Welch |
title_full_unstemmed | Coding the universe A. Beller, R. Jensen, P. Welch |
title_short | Coding the universe |
title_sort | coding the universe |
topic | Axiomatic set theory Logic, Symbolic and mathematical Zermelo-Fraenkel-Axiome (DE-588)4190747-4 gnd |
topic_facet | Axiomatic set theory Logic, Symbolic and mathematical Zermelo-Fraenkel-Axiome |
url | https://doi.org/10.1017/CBO9780511629198 |
work_keys_str_mv | AT bellera codingtheuniverse AT jensenronaldbjorn codingtheuniverse AT welchp codingtheuniverse |