An introduction to homotopy theory:

Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hilton, Peter John 1923-2010 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1953
Schriftenreihe:Cambridge tracts in mathematics 43
Schlagworte:
Online-Zugang:BSB01
FHN01
UBR01
URL des Erstveröffentlichers
Zusammenfassung:Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes
Beschreibung:1 Online-Ressource (viii, 142 Seiten)
ISBN:9780511666278
DOI:10.1017/CBO9780511666278

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen