An introduction to homotopy theory:
Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1953
|
Schriftenreihe: | Cambridge tracts in mathematics
43 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 URL des Erstveröffentlichers |
Zusammenfassung: | Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes |
Beschreibung: | 1 Online-Ressource (viii, 142 Seiten) |
ISBN: | 9780511666278 |
DOI: | 10.1017/CBO9780511666278 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942312 | ||
003 | DE-604 | ||
005 | 20190329 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1953 |||| o||u| ||||||eng d | ||
020 | |a 9780511666278 |c Online |9 978-0-511-66627-8 | ||
024 | 7 | |a 10.1017/CBO9780511666278 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511666278 | ||
035 | |a (OCoLC)967602159 | ||
035 | |a (DE-599)BVBBV043942312 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 513.83 |2 19eng | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Hilton, Peter John |d 1923-2010 |e Verfasser |0 (DE-588)115702822 |4 aut | |
245 | 1 | 0 | |a An introduction to homotopy theory |c by P. J. Hilton |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1953 | |
300 | |a 1 Online-Ressource (viii, 142 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 43 | |
505 | 8 | |a Bibliografía e índice | |
520 | |a Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes | ||
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopie |0 (DE-588)4025803-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-05265-8 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511666278 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351282 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511666278 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511666278 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511666278 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884963999744 |
---|---|
any_adam_object | |
author | Hilton, Peter John 1923-2010 |
author_GND | (DE-588)115702822 |
author_facet | Hilton, Peter John 1923-2010 |
author_role | aut |
author_sort | Hilton, Peter John 1923-2010 |
author_variant | p j h pj pjh |
building | Verbundindex |
bvnumber | BV043942312 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
contents | Bibliografía e índice |
ctrlnum | (ZDB-20-CBO)CR9780511666278 (OCoLC)967602159 (DE-599)BVBBV043942312 |
dewey-full | 513.83 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 513 - Arithmetic |
dewey-raw | 513.83 |
dewey-search | 513.83 |
dewey-sort | 3513.83 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511666278 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02916nmm a2200553zcb4500</leader><controlfield tag="001">BV043942312</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190329 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1953 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511666278</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66627-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511666278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511666278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602159</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">513.83</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilton, Peter John</subfield><subfield code="d">1923-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115702822</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to homotopy theory</subfield><subfield code="c">by P. J. Hilton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1953</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 142 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">43</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Bibliografía e índice</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-05265-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511666278</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351282</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666278</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666278</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511666278</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043942312 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511666278 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351282 |
oclc_num | 967602159 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (viii, 142 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1953 |
publishDateSearch | 1953 |
publishDateSort | 1953 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Hilton, Peter John 1923-2010 Verfasser (DE-588)115702822 aut An introduction to homotopy theory by P. J. Hilton Cambridge Cambridge University Press 1953 1 Online-Ressource (viii, 142 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 43 Bibliografía e índice Since the introduction of homotopy groups by Hurewicz in 1935, homotopy theory has occupied a prominent place in the development of algebraic topology. This monograph provides an account of the subject which bridges the gap between the fundamental concepts of topology and the more complex treatment to be found in original papers. The first six chapters describe the essential ideas of homotopy theory: homotopy groups, the classical theorems, the exact homotopy sequence, fibre-spaces, the Hopf invariant, and the Freudenthal suspension. The final chapters discuss J. H. C. Whitehead's cell-complexes and their application to homotopy groups of complexes Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Homotopie (DE-588)4025803-8 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Homotopietheorie (DE-588)4128142-1 s DE-604 Algebraische Topologie (DE-588)4120861-4 s Homotopie (DE-588)4025803-8 s Erscheint auch als Druck-Ausgabe 978-0-521-05265-8 https://doi.org/10.1017/CBO9780511666278 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hilton, Peter John 1923-2010 An introduction to homotopy theory Bibliografía e índice Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd Homotopie (DE-588)4025803-8 gnd Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4025803-8 (DE-588)4128142-1 (DE-588)4151278-9 |
title | An introduction to homotopy theory |
title_auth | An introduction to homotopy theory |
title_exact_search | An introduction to homotopy theory |
title_full | An introduction to homotopy theory by P. J. Hilton |
title_fullStr | An introduction to homotopy theory by P. J. Hilton |
title_full_unstemmed | An introduction to homotopy theory by P. J. Hilton |
title_short | An introduction to homotopy theory |
title_sort | an introduction to homotopy theory |
topic | Homotopy theory Algebraische Topologie (DE-588)4120861-4 gnd Homotopie (DE-588)4025803-8 gnd Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | Homotopy theory Algebraische Topologie Homotopie Homotopietheorie Einführung |
url | https://doi.org/10.1017/CBO9780511666278 |
work_keys_str_mv | AT hiltonpeterjohn anintroductiontohomotopytheory |