The topology of Stiefel manifolds:
Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1976
|
Schriftenreihe: | London Mathematical Society lecture note series
24 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within the subject) rather than on theory. However, such theory as is required is summarized and references to the literature are given, thus making the book accessible to non-specialists and particularly graduate students. Many examples are given and further problems suggested |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (viii, 168 pages) |
ISBN: | 9780511600753 |
DOI: | 10.1017/CBO9780511600753 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942301 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1976 |||| o||u| ||||||eng d | ||
020 | |a 9780511600753 |c Online |9 978-0-511-60075-3 | ||
024 | 7 | |a 10.1017/CBO9780511600753 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511600753 | ||
035 | |a (OCoLC)967602555 | ||
035 | |a (DE-599)BVBBV043942301 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.223 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a James, I. M. |d 1928- |e Verfasser |4 aut | |
245 | 1 | 0 | |a The topology of Stiefel manifolds |c I.M. James |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1976 | |
300 | |a 1 online resource (viii, 168 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 24 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within the subject) rather than on theory. However, such theory as is required is summarized and references to the literature are given, thus making the book accessible to non-specialists and particularly graduate students. Many examples are given and further problems suggested | ||
650 | 4 | |a Stiefel manifolds | |
650 | 0 | 7 | |a Stiefel-Mannigfaltigkeit |0 (DE-588)4183295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stiefel-Mannigfaltigkeit |0 (DE-588)4183295-4 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-21334-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511600753 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351271 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511600753 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511600753 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884963999744 |
---|---|
any_adam_object | |
author | James, I. M. 1928- |
author_facet | James, I. M. 1928- |
author_role | aut |
author_sort | James, I. M. 1928- |
author_variant | i m j im imj |
building | Verbundindex |
bvnumber | BV043942301 |
classification_rvk | SI 320 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511600753 (OCoLC)967602555 (DE-599)BVBBV043942301 |
dewey-full | 514/.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.223 |
dewey-search | 514/.223 |
dewey-sort | 3514 3223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511600753 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02524nmm a2200493zcb4500</leader><controlfield tag="001">BV043942301</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600753</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-60075-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511600753</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511600753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967602555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942301</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.223</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">James, I. M.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The topology of Stiefel manifolds</subfield><subfield code="c">I.M. James</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 168 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">24</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within the subject) rather than on theory. However, such theory as is required is summarized and references to the literature are given, thus making the book accessible to non-specialists and particularly graduate students. Many examples are given and further problems suggested</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stiefel manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stiefel-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stiefel-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4183295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-21334-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511600753</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351271</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600753</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511600753</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942301 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511600753 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351271 |
oclc_num | 967602555 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (viii, 168 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | James, I. M. 1928- Verfasser aut The topology of Stiefel manifolds I.M. James Cambridge Cambridge University Press 1976 1 online resource (viii, 168 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 24 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Stiefel manifolds are an interesting family of spaces much studied by algebraic topologists. These notes, which originated in a course given at Harvard University, describe the state of knowledge of the subject, as well as the outstanding problems. The emphasis throughout is on applications (within the subject) rather than on theory. However, such theory as is required is summarized and references to the literature are given, thus making the book accessible to non-specialists and particularly graduate students. Many examples are given and further problems suggested Stiefel manifolds Stiefel-Mannigfaltigkeit (DE-588)4183295-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Stiefel-Mannigfaltigkeit (DE-588)4183295-4 s Topologie (DE-588)4060425-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-21334-9 https://doi.org/10.1017/CBO9780511600753 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | James, I. M. 1928- The topology of Stiefel manifolds Stiefel manifolds Stiefel-Mannigfaltigkeit (DE-588)4183295-4 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4183295-4 (DE-588)4060425-1 |
title | The topology of Stiefel manifolds |
title_auth | The topology of Stiefel manifolds |
title_exact_search | The topology of Stiefel manifolds |
title_full | The topology of Stiefel manifolds I.M. James |
title_fullStr | The topology of Stiefel manifolds I.M. James |
title_full_unstemmed | The topology of Stiefel manifolds I.M. James |
title_short | The topology of Stiefel manifolds |
title_sort | the topology of stiefel manifolds |
topic | Stiefel manifolds Stiefel-Mannigfaltigkeit (DE-588)4183295-4 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Stiefel manifolds Stiefel-Mannigfaltigkeit Topologie |
url | https://doi.org/10.1017/CBO9780511600753 |
work_keys_str_mv | AT jamesim thetopologyofstiefelmanifolds |