An introduction to topological groups:
Graduate students in many branches of mathematics need to know something about topological groups and the Haar integral to enable them to understand applications in their own fields. In this introduction to the subject, Professor Higgins covers the basic theorems they are likely to need, assuming on...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1974
|
Schriftenreihe: | London Mathematical Society lecture note series
15 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Graduate students in many branches of mathematics need to know something about topological groups and the Haar integral to enable them to understand applications in their own fields. In this introduction to the subject, Professor Higgins covers the basic theorems they are likely to need, assuming only some elementary group theory. The book is based on lecture courses given for the London M.Sc. degree in 1969 and 1972, and the treatment is more algebraic than usual, reflecting the interests of the author and his audience. The volume ends with an informal account of one important application of the Haar integral, to the representation theory of compact groups, and suggests further reading on this and similar topics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (v, 109 pages) |
ISBN: | 9781107359918 |
DOI: | 10.1017/CBO9781107359918 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942300 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1974 |||| o||u| ||||||eng d | ||
020 | |a 9781107359918 |c Online |9 978-1-107-35991-8 | ||
024 | 7 | |a 10.1017/CBO9781107359918 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107359918 | ||
035 | |a (OCoLC)967683936 | ||
035 | |a (DE-599)BVBBV043942300 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Higgins, Philip J. |d 1926- |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to topological groups |c P.J. Higgins |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1974 | |
300 | |a 1 online resource (v, 109 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 15 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Graduate students in many branches of mathematics need to know something about topological groups and the Haar integral to enable them to understand applications in their own fields. In this introduction to the subject, Professor Higgins covers the basic theorems they are likely to need, assuming only some elementary group theory. The book is based on lecture courses given for the London M.Sc. degree in 1969 and 1972, and the treatment is more algebraic than usual, reflecting the interests of the author and his audience. The volume ends with an informal account of one important application of the Haar integral, to the representation theory of compact groups, and suggests further reading on this and similar topics | ||
650 | 4 | |a Topological groups | |
650 | 0 | 7 | |a Topologische Gruppe |0 (DE-588)4135793-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Gruppe |0 (DE-588)4135793-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-20527-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107359918 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351269 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107359918 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107359918 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884958756864 |
---|---|
any_adam_object | |
author | Higgins, Philip J. 1926- |
author_facet | Higgins, Philip J. 1926- |
author_role | aut |
author_sort | Higgins, Philip J. 1926- |
author_variant | p j h pj pjh |
building | Verbundindex |
bvnumber | BV043942300 |
classification_rvk | SI 320 SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107359918 (OCoLC)967683936 (DE-599)BVBBV043942300 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107359918 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02566nmm a2200469zcb4500</leader><controlfield tag="001">BV043942300</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107359918</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-35991-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107359918</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107359918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967683936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942300</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Higgins, Philip J.</subfield><subfield code="d">1926-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to topological groups</subfield><subfield code="c">P.J. Higgins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (v, 109 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graduate students in many branches of mathematics need to know something about topological groups and the Haar integral to enable them to understand applications in their own fields. In this introduction to the subject, Professor Higgins covers the basic theorems they are likely to need, assuming only some elementary group theory. The book is based on lecture courses given for the London M.Sc. degree in 1969 and 1972, and the treatment is more algebraic than usual, reflecting the interests of the author and his audience. The volume ends with an informal account of one important application of the Haar integral, to the representation theory of compact groups, and suggests further reading on this and similar topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Gruppe</subfield><subfield code="0">(DE-588)4135793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-20527-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107359918</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351269</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359918</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107359918</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942300 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781107359918 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351269 |
oclc_num | 967683936 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (v, 109 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Higgins, Philip J. 1926- Verfasser aut An introduction to topological groups P.J. Higgins Cambridge Cambridge University Press 1974 1 online resource (v, 109 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 15 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Graduate students in many branches of mathematics need to know something about topological groups and the Haar integral to enable them to understand applications in their own fields. In this introduction to the subject, Professor Higgins covers the basic theorems they are likely to need, assuming only some elementary group theory. The book is based on lecture courses given for the London M.Sc. degree in 1969 and 1972, and the treatment is more algebraic than usual, reflecting the interests of the author and his audience. The volume ends with an informal account of one important application of the Haar integral, to the representation theory of compact groups, and suggests further reading on this and similar topics Topological groups Topologische Gruppe (DE-588)4135793-0 gnd rswk-swf Topologische Gruppe (DE-588)4135793-0 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-20527-6 https://doi.org/10.1017/CBO9781107359918 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Higgins, Philip J. 1926- An introduction to topological groups Topological groups Topologische Gruppe (DE-588)4135793-0 gnd |
subject_GND | (DE-588)4135793-0 |
title | An introduction to topological groups |
title_auth | An introduction to topological groups |
title_exact_search | An introduction to topological groups |
title_full | An introduction to topological groups P.J. Higgins |
title_fullStr | An introduction to topological groups P.J. Higgins |
title_full_unstemmed | An introduction to topological groups P.J. Higgins |
title_short | An introduction to topological groups |
title_sort | an introduction to topological groups |
topic | Topological groups Topologische Gruppe (DE-588)4135793-0 gnd |
topic_facet | Topological groups Topologische Gruppe |
url | https://doi.org/10.1017/CBO9781107359918 |
work_keys_str_mv | AT higginsphilipj anintroductiontotopologicalgroups |