Parallelisms of complete designs:
These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1976
|
Schriftenreihe: | London Mathematical Society lecture note series
23 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (144 pages) |
ISBN: | 9780511662102 |
DOI: | 10.1017/CBO9780511662102 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942295 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1976 |||| o||u| ||||||eng d | ||
020 | |a 9780511662102 |c Online |9 978-0-511-66210-2 | ||
024 | 7 | |a 10.1017/CBO9780511662102 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662102 | ||
035 | |a (OCoLC)967684228 | ||
035 | |a (DE-599)BVBBV043942295 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.13 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Cameron, Peter J. |d 1947- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallelisms of complete designs |c Peter J. Cameron |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1976 | |
300 | |a 1 online resource (144 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 23 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time | ||
650 | 4 | |a Combinatorial designs and configurations | |
650 | 4 | |a Permutation groups | |
650 | 4 | |a Parallels (Geometry) | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-21160-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662102 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351264 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511662102 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662102 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884949319680 |
---|---|
any_adam_object | |
author | Cameron, Peter J. 1947- |
author_facet | Cameron, Peter J. 1947- |
author_role | aut |
author_sort | Cameron, Peter J. 1947- |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | BV043942295 |
classification_rvk | SI 320 SK 170 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662102 (OCoLC)967684228 (DE-599)BVBBV043942295 |
dewey-full | 516/.13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.13 |
dewey-search | 516/.13 |
dewey-sort | 3516 213 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662102 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02326nmm a2200457zcb4500</leader><controlfield tag="001">BV043942295</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662102</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66210-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662102</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967684228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942295</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.13</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallelisms of complete designs</subfield><subfield code="c">Peter J. Cameron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (144 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">23</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial designs and configurations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallels (Geometry)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-21160-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662102</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351264</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662102</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662102</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942295 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662102 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351264 |
oclc_num | 967684228 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (144 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Cameron, Peter J. 1947- Verfasser aut Parallelisms of complete designs Peter J. Cameron Cambridge Cambridge University Press 1976 1 online resource (144 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 23 Title from publisher's bibliographic system (viewed on 05 Oct 2015) These notes present an investigation of a condition similar to Euclid's parallel axiom for subsets of finite sets. The background material to the theory of parallelisms is introduced and the author then describes the links this theory has with other topics from the whole range of combinatorial theory and permutation groups. These include network flows, perfect codes, Latin squares, block designs and multiply-transitive permutation groups, and long and detailed appendices are provided to serve as introductions to these various subjects. Many of the results are published for the first time Combinatorial designs and configurations Permutation groups Parallels (Geometry) Erscheint auch als Druckausgabe 978-0-521-21160-4 https://doi.org/10.1017/CBO9780511662102 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cameron, Peter J. 1947- Parallelisms of complete designs Combinatorial designs and configurations Permutation groups Parallels (Geometry) |
title | Parallelisms of complete designs |
title_auth | Parallelisms of complete designs |
title_exact_search | Parallelisms of complete designs |
title_full | Parallelisms of complete designs Peter J. Cameron |
title_fullStr | Parallelisms of complete designs Peter J. Cameron |
title_full_unstemmed | Parallelisms of complete designs Peter J. Cameron |
title_short | Parallelisms of complete designs |
title_sort | parallelisms of complete designs |
topic | Combinatorial designs and configurations Permutation groups Parallels (Geometry) |
topic_facet | Combinatorial designs and configurations Permutation groups Parallels (Geometry) |
url | https://doi.org/10.1017/CBO9780511662102 |
work_keys_str_mv | AT cameronpeterj parallelismsofcompletedesigns |