A geometric approach to homology theory:
The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1976
|
Schriftenreihe: | London Mathematical Society lecture note series
18 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (149 pages) |
ISBN: | 9780511662669 |
DOI: | 10.1017/CBO9780511662669 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942294 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1976 |||| o||u| ||||||eng d | ||
020 | |a 9780511662669 |c Online |9 978-0-511-66266-9 | ||
024 | 7 | |a 10.1017/CBO9780511662669 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662669 | ||
035 | |a (OCoLC)907964193 | ||
035 | |a (DE-599)BVBBV043942294 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 514/.23 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Buoncristiano, S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A geometric approach to homology theory |c by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1976 | |
300 | |a 1 online resource (149 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 18 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory | ||
650 | 4 | |a Homology theory | |
650 | 4 | |a Cobordism theory | |
650 | 0 | 7 | |a Homologie |0 (DE-588)4141951-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homologie |0 (DE-588)4141951-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Rourke, C. P. |d 1943- |e Sonstige |4 oth | |
700 | 1 | |a Sanderson, B. J. |d 1939- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-20940-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662669 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351263 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662669 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662669 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884949319680 |
---|---|
any_adam_object | |
author | Buoncristiano, S. |
author_facet | Buoncristiano, S. |
author_role | aut |
author_sort | Buoncristiano, S. |
author_variant | s b sb |
building | Verbundindex |
bvnumber | BV043942294 |
classification_rvk | SI 320 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662669 (OCoLC)907964193 (DE-599)BVBBV043942294 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662669 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02787nmm a2200553zcb4500</leader><controlfield tag="001">BV043942294</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662669</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66266-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662669</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907964193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942294</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buoncristiano, S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A geometric approach to homology theory</subfield><subfield code="c">by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (149 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobordism theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologie</subfield><subfield code="0">(DE-588)4141951-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homologie</subfield><subfield code="0">(DE-588)4141951-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rourke, C. P.</subfield><subfield code="d">1943-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanderson, B. J.</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-20940-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662669</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351263</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662669</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662669</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942294 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662669 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351263 |
oclc_num | 907964193 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (149 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Buoncristiano, S. Verfasser aut A geometric approach to homology theory by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson Cambridge Cambridge University Press 1976 1 online resource (149 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 18 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory Homology theory Cobordism theory Homologie (DE-588)4141951-0 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Homologietheorie (DE-588)4141714-8 s 1\p DE-604 Homologie (DE-588)4141951-0 s 2\p DE-604 Rourke, C. P. 1943- Sonstige oth Sanderson, B. J. 1939- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-20940-3 https://doi.org/10.1017/CBO9780511662669 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Buoncristiano, S. A geometric approach to homology theory Homology theory Cobordism theory Homologie (DE-588)4141951-0 gnd Homologietheorie (DE-588)4141714-8 gnd |
subject_GND | (DE-588)4141951-0 (DE-588)4141714-8 |
title | A geometric approach to homology theory |
title_auth | A geometric approach to homology theory |
title_exact_search | A geometric approach to homology theory |
title_full | A geometric approach to homology theory by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson |
title_fullStr | A geometric approach to homology theory by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson |
title_full_unstemmed | A geometric approach to homology theory by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson |
title_short | A geometric approach to homology theory |
title_sort | a geometric approach to homology theory |
topic | Homology theory Cobordism theory Homologie (DE-588)4141951-0 gnd Homologietheorie (DE-588)4141714-8 gnd |
topic_facet | Homology theory Cobordism theory Homologie Homologietheorie |
url | https://doi.org/10.1017/CBO9780511662669 |
work_keys_str_mv | AT buoncristianos ageometricapproachtohomologytheory AT rourkecp ageometricapproachtohomologytheory AT sandersonbj ageometricapproachtohomologytheory |