General theory of lie groupoids and lie algebroids:
This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | London Mathematical Society lecture note series
213 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBW01 Volltext |
Zusammenfassung: | This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids |
Beschreibung: | 1 Online-Ressource (XXXV, 501 S.) |
ISBN: | 9781107325883 |
DOI: | 10.1017/CBO9781107325883 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942271 | ||
003 | DE-604 | ||
005 | 20240305 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9781107325883 |c Online |9 978-1-107-32588-3 | ||
024 | 7 | |a 10.1017/CBO9781107325883 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107325883 | ||
035 | |a (OCoLC)852654176 | ||
035 | |a (DE-599)BVBBV043942271 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-20 | ||
082 | 0 | |a 512.482 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Mackenzie, Kirill C.H. |e Verfasser |0 (DE-588)1089362366 |4 aut | |
245 | 1 | 0 | |a General theory of lie groupoids and lie algebroids |c Kirill C.H. Mackenzie |
246 | 1 | 3 | |a General Theory of Lie Groupoids & Lie Algebroids |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 Online-Ressource (XXXV, 501 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series |v 213 | |
520 | |a This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids | ||
650 | 4 | |a Lie groupoids | |
650 | 4 | |a Lie algebroids | |
650 | 4 | |a Vector bundles | |
650 | 4 | |a Connections (Mathematics) | |
650 | 0 | 7 | |a Lie-Algebroid |0 (DE-588)4630863-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Analysis |0 (DE-588)4021285-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppoid |0 (DE-588)4224180-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Analysis |0 (DE-588)4021285-3 |D s |
689 | 0 | 1 | |a Lie-Gruppoid |0 (DE-588)4224180-7 |D s |
689 | 0 | 2 | |a Lie-Algebroid |0 (DE-588)4630863-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-49928-6 |
830 | 0 | |a London Mathematical Society lecture note series |v 213 |w (DE-604)BV044784209 |9 213 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107325883 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351240 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107325883 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107325883 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107325883 |l UBW01 |p ZDB-20-CBO |q UBW_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884896890880 |
---|---|
any_adam_object | |
author | Mackenzie, Kirill C.H |
author_GND | (DE-588)1089362366 |
author_facet | Mackenzie, Kirill C.H |
author_role | aut |
author_sort | Mackenzie, Kirill C.H |
author_variant | k c m kc kcm |
building | Verbundindex |
bvnumber | BV043942271 |
classification_rvk | SI 320 SK 340 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781107325883 (OCoLC)852654176 (DE-599)BVBBV043942271 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107325883 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03162nmm a2200577zcb4500</leader><controlfield tag="001">BV043942271</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240305 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107325883</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32588-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107325883</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107325883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852654176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942271</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mackenzie, Kirill C.H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089362366</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General theory of lie groupoids and lie algebroids</subfield><subfield code="c">Kirill C.H. Mackenzie</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">General Theory of Lie Groupoids & Lie Algebroids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXV, 501 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">213</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groupoids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebroids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector bundles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Connections (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebroid</subfield><subfield code="0">(DE-588)4630863-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppoid</subfield><subfield code="0">(DE-588)4224180-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppoid</subfield><subfield code="0">(DE-588)4224180-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Algebroid</subfield><subfield code="0">(DE-588)4630863-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-49928-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">213</subfield><subfield code="w">(DE-604)BV044784209</subfield><subfield code="9">213</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107325883</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351240</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325883</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325883</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107325883</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942271 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781107325883 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351240 |
oclc_num | 852654176 |
open_access_boolean | |
owner | DE-12 DE-92 DE-20 |
owner_facet | DE-12 DE-92 DE-20 |
physical | 1 Online-Ressource (XXXV, 501 S.) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBW_Einzelkauf |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series | London Mathematical Society lecture note series |
series2 | London Mathematical Society lecture note series |
spelling | Mackenzie, Kirill C.H. Verfasser (DE-588)1089362366 aut General theory of lie groupoids and lie algebroids Kirill C.H. Mackenzie General Theory of Lie Groupoids & Lie Algebroids Cambridge Cambridge University Press 2005 1 Online-Ressource (XXXV, 501 S.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 213 This a comprehensive modern account of the theory of Lie groupoids and Lie algebroids, and their importance in differential geometry, in particular their relations with Poisson geometry and general connection theory. It covers much work done since the mid 1980s including the first treatment in book form of Poisson groupoids, Lie bialgebroids and double vector bundles, as well as a revised account of the relations between locally trivial Lie groupoids, Atiyah sequences, and connections in principal bundles. As such, this book will be of great interest to all those concerned with the use of Poisson geometry as a semi-classical limit of quantum geometry, as well as to all those working in or wishing to learn the modern theory of Lie groupoids and Lie algebroids Lie groupoids Lie algebroids Vector bundles Connections (Mathematics) Lie-Algebroid (DE-588)4630863-5 gnd rswk-swf Globale Analysis (DE-588)4021285-3 gnd rswk-swf Lie-Gruppoid (DE-588)4224180-7 gnd rswk-swf Globale Analysis (DE-588)4021285-3 s Lie-Gruppoid (DE-588)4224180-7 s Lie-Algebroid (DE-588)4630863-5 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-49928-6 London Mathematical Society lecture note series 213 (DE-604)BV044784209 213 https://doi.org/10.1017/CBO9781107325883 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mackenzie, Kirill C.H General theory of lie groupoids and lie algebroids London Mathematical Society lecture note series Lie groupoids Lie algebroids Vector bundles Connections (Mathematics) Lie-Algebroid (DE-588)4630863-5 gnd Globale Analysis (DE-588)4021285-3 gnd Lie-Gruppoid (DE-588)4224180-7 gnd |
subject_GND | (DE-588)4630863-5 (DE-588)4021285-3 (DE-588)4224180-7 |
title | General theory of lie groupoids and lie algebroids |
title_alt | General Theory of Lie Groupoids & Lie Algebroids |
title_auth | General theory of lie groupoids and lie algebroids |
title_exact_search | General theory of lie groupoids and lie algebroids |
title_full | General theory of lie groupoids and lie algebroids Kirill C.H. Mackenzie |
title_fullStr | General theory of lie groupoids and lie algebroids Kirill C.H. Mackenzie |
title_full_unstemmed | General theory of lie groupoids and lie algebroids Kirill C.H. Mackenzie |
title_short | General theory of lie groupoids and lie algebroids |
title_sort | general theory of lie groupoids and lie algebroids |
topic | Lie groupoids Lie algebroids Vector bundles Connections (Mathematics) Lie-Algebroid (DE-588)4630863-5 gnd Globale Analysis (DE-588)4021285-3 gnd Lie-Gruppoid (DE-588)4224180-7 gnd |
topic_facet | Lie groupoids Lie algebroids Vector bundles Connections (Mathematics) Lie-Algebroid Globale Analysis Lie-Gruppoid |
url | https://doi.org/10.1017/CBO9781107325883 |
volume_link | (DE-604)BV044784209 |
work_keys_str_mv | AT mackenziekirillch generaltheoryofliegroupoidsandliealgebroids AT mackenziekirillch generaltheoryofliegroupoidsliealgebroids |