Cellular structures in topology:
This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | Cambridge studies in advanced mathematics
19 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory |
Beschreibung: | 1 online resource (xi, 326 Seiten) |
ISBN: | 9780511983948 |
DOI: | 10.1017/CBO9780511983948 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942270 | ||
003 | DE-604 | ||
005 | 20210316 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511983948 |c Online |9 978-0-511-98394-8 | ||
024 | 7 | |a 10.1017/CBO9780511983948 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511983948 | ||
035 | |a (OCoLC)859643133 | ||
035 | |a (DE-599)BVBBV043942270 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 |a DE-83 | ||
082 | 0 | |a 514/.223 |2 20 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Fritsch, Rudolf |d 1939-2018 |e Verfasser |0 (DE-588)131425749 |4 aut | |
245 | 1 | 0 | |a Cellular structures in topology |c Rudolf Fritsch, Renzo A. Piccinini |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (xi, 326 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 19 | |
520 | |a This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory | ||
650 | 4 | |a CW complexes | |
650 | 4 | |a Complexes | |
650 | 4 | |a k-spaces | |
650 | 0 | 7 | |a CW-Komplex |0 (DE-588)4148419-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Simplizialer Komplex |0 (DE-588)4181492-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a CW-Komplex |0 (DE-588)4148419-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Simplizialer Komplex |0 (DE-588)4181492-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a CW-Komplex |0 (DE-588)4148419-8 |D s |
689 | 2 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Piccinini, Renzo A. |d 1933- |e Sonstige |0 (DE-588)1089147392 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-32784-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-06387-6 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 19 |w (DE-604)BV044781283 |9 19 | |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511983948 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351239 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511983948 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511983948 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511983948 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884893745152 |
---|---|
any_adam_object | |
author | Fritsch, Rudolf 1939-2018 |
author_GND | (DE-588)131425749 (DE-588)1089147392 |
author_facet | Fritsch, Rudolf 1939-2018 |
author_role | aut |
author_sort | Fritsch, Rudolf 1939-2018 |
author_variant | r f rf |
building | Verbundindex |
bvnumber | BV043942270 |
classification_rvk | SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511983948 (OCoLC)859643133 (DE-599)BVBBV043942270 |
dewey-full | 514/.223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.223 |
dewey-search | 514/.223 |
dewey-sort | 3514 3223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511983948 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03578nmm a2200589zcb4500</leader><controlfield tag="001">BV043942270</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210316 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511983948</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98394-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511983948</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511983948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859643133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942270</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.223</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fritsch, Rudolf</subfield><subfield code="d">1939-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131425749</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cellular structures in topology</subfield><subfield code="c">Rudolf Fritsch, Renzo A. Piccinini</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 326 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">19</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CW complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">k-spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CW-Komplex</subfield><subfield code="0">(DE-588)4148419-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Simplizialer Komplex</subfield><subfield code="0">(DE-588)4181492-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">CW-Komplex</subfield><subfield code="0">(DE-588)4148419-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Simplizialer Komplex</subfield><subfield code="0">(DE-588)4181492-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">CW-Komplex</subfield><subfield code="0">(DE-588)4148419-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piccinini, Renzo A.</subfield><subfield code="d">1933-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1089147392</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-32784-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-06387-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">19</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">19</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511983948</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351239</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511983948</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511983948</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511983948</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942270 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511983948 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351239 |
oclc_num | 859643133 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR DE-83 |
physical | 1 online resource (xi, 326 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Fritsch, Rudolf 1939-2018 Verfasser (DE-588)131425749 aut Cellular structures in topology Rudolf Fritsch, Renzo A. Piccinini Cambridge Cambridge University Press 1990 1 online resource (xi, 326 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 19 This book describes the construction and the properties of CW-complexes. These spaces are important because firstly they are the correct framework for homotopy theory, and secondly most spaces that arise in pure mathematics are of this type. The authors discuss the foundations and also developments, for example, the theory of finite CW-complexes, CW-complexes in relation to the theory of fibrations, and Milnor's work on spaces of the type of CW-complexes. They establish very clearly the relationship between CW-complexes and the theory of simplicial complexes, which is developed in great detail. Exercises are provided throughout the book; some are straightforward, others extend the text in a non-trivial way. For the latter; further reference is given for their solution. Each chapter ends with a section sketching the historical development. An appendix gives basic results from topology, homology and homotopy theory. These features will aid graduate students, who can use the work as a course text. As a contemporary reference work it will be essential reading for the more specialized workers in algebraic topology and homotopy theory CW complexes Complexes k-spaces CW-Komplex (DE-588)4148419-8 gnd rswk-swf Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Simplizialer Komplex (DE-588)4181492-7 gnd rswk-swf CW-Komplex (DE-588)4148419-8 s DE-604 Simplizialer Komplex (DE-588)4181492-7 s Algebraische Topologie (DE-588)4120861-4 s Piccinini, Renzo A. 1933- Sonstige (DE-588)1089147392 oth Erscheint auch als Druck-Ausgabe 978-0-521-32784-8 Erscheint auch als Druck-Ausgabe 978-0-521-06387-6 Cambridge studies in advanced mathematics 19 (DE-604)BV044781283 19 https://doi.org/10.1017/CBO9780511983948 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Fritsch, Rudolf 1939-2018 Cellular structures in topology Cambridge studies in advanced mathematics CW complexes Complexes k-spaces CW-Komplex (DE-588)4148419-8 gnd Algebraische Topologie (DE-588)4120861-4 gnd Simplizialer Komplex (DE-588)4181492-7 gnd |
subject_GND | (DE-588)4148419-8 (DE-588)4120861-4 (DE-588)4181492-7 |
title | Cellular structures in topology |
title_auth | Cellular structures in topology |
title_exact_search | Cellular structures in topology |
title_full | Cellular structures in topology Rudolf Fritsch, Renzo A. Piccinini |
title_fullStr | Cellular structures in topology Rudolf Fritsch, Renzo A. Piccinini |
title_full_unstemmed | Cellular structures in topology Rudolf Fritsch, Renzo A. Piccinini |
title_short | Cellular structures in topology |
title_sort | cellular structures in topology |
topic | CW complexes Complexes k-spaces CW-Komplex (DE-588)4148419-8 gnd Algebraische Topologie (DE-588)4120861-4 gnd Simplizialer Komplex (DE-588)4181492-7 gnd |
topic_facet | CW complexes Complexes k-spaces CW-Komplex Algebraische Topologie Simplizialer Komplex |
url | https://doi.org/10.1017/CBO9780511983948 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT fritschrudolf cellularstructuresintopology AT piccininirenzoa cellularstructuresintopology |