Spline functions on triangulations:
Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 110 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smooth macro-element spaces will allow engineers and scientists using the FEM method to solve partial differential equations numerically with new tools. Workers in the geosciences will find new tools for approximation and data fitting on the sphere. Ideal as a graduate text in approximation theory, and as a source book for courses in computer-aided geometric design or in finite-element methods |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 592 pages) |
ISBN: | 9780511721588 |
DOI: | 10.1017/CBO9780511721588 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942260 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511721588 |c Online |9 978-0-511-72158-8 | ||
024 | 7 | |a 10.1017/CBO9780511721588 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721588 | ||
035 | |a (OCoLC)850094766 | ||
035 | |a (DE-599)BVBBV043942260 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511.422 |2 22 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Lai, Ming-Jun |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spline functions on triangulations |c Ming-Jun Lai and Larry L. Schumaker |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 online resource (xv, 592 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 110 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Bivariate polynomials -- Bernstein-Bézier methods for bivariate polynomials -- B-patches -- Triangulations and quadrangulations -- Bernstein-Bézier methods for Spline spaces -- C¹ macro-element spaces -- C² macro-element spaces -- Cr macro-element spaces -- Dimension of Spline spaces -- Approimation power of Spline spaces -- Stable local minimal determining sets -- Bivariate box Splines -- Spherical Splines -- Approximation power of spherical Splines -- Trivariate polynomials -- Tetrahedral partitions -- Trivariate Splines -- Trivariate macro-element spaces | |
520 | |a Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smooth macro-element spaces will allow engineers and scientists using the FEM method to solve partial differential equations numerically with new tools. Workers in the geosciences will find new tools for approximation and data fitting on the sphere. Ideal as a graduate text in approximation theory, and as a source book for courses in computer-aided geometric design or in finite-element methods | ||
650 | 4 | |a Spline theory | |
650 | 0 | 7 | |a Spline-Approximation |0 (DE-588)4182394-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Funktion |0 (DE-588)4056332-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Triangulation |0 (DE-588)4186017-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline-Funktion |0 (DE-588)4056332-7 |D s |
689 | 0 | 1 | |a Triangulation |0 (DE-588)4186017-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Spline-Approximation |0 (DE-588)4182394-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Schumaker, Larry L. |d 1939- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87592-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721588 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351229 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511721588 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721588 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884852850688 |
---|---|
any_adam_object | |
author | Lai, Ming-Jun |
author_facet | Lai, Ming-Jun |
author_role | aut |
author_sort | Lai, Ming-Jun |
author_variant | m j l mjl |
building | Verbundindex |
bvnumber | BV043942260 |
classification_rvk | SK 470 |
collection | ZDB-20-CBO |
contents | Bivariate polynomials -- Bernstein-Bézier methods for bivariate polynomials -- B-patches -- Triangulations and quadrangulations -- Bernstein-Bézier methods for Spline spaces -- C¹ macro-element spaces -- C² macro-element spaces -- Cr macro-element spaces -- Dimension of Spline spaces -- Approimation power of Spline spaces -- Stable local minimal determining sets -- Bivariate box Splines -- Spherical Splines -- Approximation power of spherical Splines -- Trivariate polynomials -- Tetrahedral partitions -- Trivariate Splines -- Trivariate macro-element spaces |
ctrlnum | (ZDB-20-CBO)CR9780511721588 (OCoLC)850094766 (DE-599)BVBBV043942260 |
dewey-full | 511.422 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.422 |
dewey-search | 511.422 |
dewey-sort | 3511.422 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511721588 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03842nmm a2200553zcb4500</leader><controlfield tag="001">BV043942260</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721588</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72158-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721588</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850094766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942260</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.422</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lai, Ming-Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spline functions on triangulations</subfield><subfield code="c">Ming-Jun Lai and Larry L. Schumaker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 592 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 110</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Bivariate polynomials -- Bernstein-Bézier methods for bivariate polynomials -- B-patches -- Triangulations and quadrangulations -- Bernstein-Bézier methods for Spline spaces -- C¹ macro-element spaces -- C² macro-element spaces -- Cr macro-element spaces -- Dimension of Spline spaces -- Approimation power of Spline spaces -- Stable local minimal determining sets -- Bivariate box Splines -- Spherical Splines -- Approximation power of spherical Splines -- Trivariate polynomials -- Tetrahedral partitions -- Trivariate Splines -- Trivariate macro-element spaces</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smooth macro-element spaces will allow engineers and scientists using the FEM method to solve partial differential equations numerically with new tools. Workers in the geosciences will find new tools for approximation and data fitting on the sphere. Ideal as a graduate text in approximation theory, and as a source book for courses in computer-aided geometric design or in finite-element methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline-Funktion</subfield><subfield code="0">(DE-588)4056332-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schumaker, Larry L.</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87592-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721588</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351229</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721588</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721588</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942260 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511721588 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351229 |
oclc_num | 850094766 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 592 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Lai, Ming-Jun Verfasser aut Spline functions on triangulations Ming-Jun Lai and Larry L. Schumaker Cambridge Cambridge University Press 2007 1 online resource (xv, 592 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 110 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Bivariate polynomials -- Bernstein-Bézier methods for bivariate polynomials -- B-patches -- Triangulations and quadrangulations -- Bernstein-Bézier methods for Spline spaces -- C¹ macro-element spaces -- C² macro-element spaces -- Cr macro-element spaces -- Dimension of Spline spaces -- Approimation power of Spline spaces -- Stable local minimal determining sets -- Bivariate box Splines -- Spherical Splines -- Approximation power of spherical Splines -- Trivariate polynomials -- Tetrahedral partitions -- Trivariate Splines -- Trivariate macro-element spaces Spline functions are universally recognized as highly effective tools in approximation theory, computer-aided geometric design, image analysis, and numerical analysis. The theory of univariate splines is well known but this text is the first comprehensive treatment of the analogous bivariate theory. A detailed mathematical treatment of polynomial splines on triangulations is outlined, providing a basis for developing practical methods for using splines in numerous application areas. The detailed treatment of the Bernstein-Bézier representation of polynomials will provide a valuable source for researchers and students in CAGD. Chapters on smooth macro-element spaces will allow engineers and scientists using the FEM method to solve partial differential equations numerically with new tools. Workers in the geosciences will find new tools for approximation and data fitting on the sphere. Ideal as a graduate text in approximation theory, and as a source book for courses in computer-aided geometric design or in finite-element methods Spline theory Spline-Approximation (DE-588)4182394-1 gnd rswk-swf Spline-Funktion (DE-588)4056332-7 gnd rswk-swf Triangulation (DE-588)4186017-2 gnd rswk-swf Spline-Funktion (DE-588)4056332-7 s Triangulation (DE-588)4186017-2 s 1\p DE-604 Spline-Approximation (DE-588)4182394-1 s 2\p DE-604 Schumaker, Larry L. 1939- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-87592-9 https://doi.org/10.1017/CBO9780511721588 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lai, Ming-Jun Spline functions on triangulations Bivariate polynomials -- Bernstein-Bézier methods for bivariate polynomials -- B-patches -- Triangulations and quadrangulations -- Bernstein-Bézier methods for Spline spaces -- C¹ macro-element spaces -- C² macro-element spaces -- Cr macro-element spaces -- Dimension of Spline spaces -- Approimation power of Spline spaces -- Stable local minimal determining sets -- Bivariate box Splines -- Spherical Splines -- Approximation power of spherical Splines -- Trivariate polynomials -- Tetrahedral partitions -- Trivariate Splines -- Trivariate macro-element spaces Spline theory Spline-Approximation (DE-588)4182394-1 gnd Spline-Funktion (DE-588)4056332-7 gnd Triangulation (DE-588)4186017-2 gnd |
subject_GND | (DE-588)4182394-1 (DE-588)4056332-7 (DE-588)4186017-2 |
title | Spline functions on triangulations |
title_auth | Spline functions on triangulations |
title_exact_search | Spline functions on triangulations |
title_full | Spline functions on triangulations Ming-Jun Lai and Larry L. Schumaker |
title_fullStr | Spline functions on triangulations Ming-Jun Lai and Larry L. Schumaker |
title_full_unstemmed | Spline functions on triangulations Ming-Jun Lai and Larry L. Schumaker |
title_short | Spline functions on triangulations |
title_sort | spline functions on triangulations |
topic | Spline theory Spline-Approximation (DE-588)4182394-1 gnd Spline-Funktion (DE-588)4056332-7 gnd Triangulation (DE-588)4186017-2 gnd |
topic_facet | Spline theory Spline-Approximation Spline-Funktion Triangulation |
url | https://doi.org/10.1017/CBO9780511721588 |
work_keys_str_mv | AT laimingjun splinefunctionsontriangulations AT schumakerlarryl splinefunctionsontriangulations |