Isolated singular points on complete intersections:
Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schriftenreihe: | London Mathematical Society lecture note series
77 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 200 pages) |
ISBN: | 9780511662720 |
DOI: | 10.1017/CBO9780511662720 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942257 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780511662720 |c Online |9 978-0-511-66272-0 | ||
024 | 7 | |a 10.1017/CBO9780511662720 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662720 | ||
035 | |a (OCoLC)967697467 | ||
035 | |a (DE-599)BVBBV043942257 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516.3/5 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
100 | 1 | |a Looijenga, E. |d 1948- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Isolated singular points on complete intersections |c E.J.N. Looijenga |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xi, 200 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 77 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations | ||
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Singularities (Mathematics) | |
650 | 0 | 7 | |a Vollständiger Durchschnitt |0 (DE-588)4188587-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Isolierte Singularität |0 (DE-588)4123453-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Isolierte Singularität |0 (DE-588)4123453-4 |D s |
689 | 0 | 1 | |a Vollständiger Durchschnitt |0 (DE-588)4188587-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-28674-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662720 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351226 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662720 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662720 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884870676480 |
---|---|
any_adam_object | |
author | Looijenga, E. 1948- |
author_facet | Looijenga, E. 1948- |
author_role | aut |
author_sort | Looijenga, E. 1948- |
author_variant | e l el |
building | Verbundindex |
bvnumber | BV043942257 |
classification_rvk | SI 320 SK 240 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662720 (OCoLC)967697467 (DE-599)BVBBV043942257 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662720 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02529nmm a2200505zcb4500</leader><controlfield tag="001">BV043942257</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662720</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66272-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662720</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697467</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942257</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Looijenga, E.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Isolated singular points on complete intersections</subfield><subfield code="c">E.J.N. Looijenga</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 200 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">77</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularities (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vollständiger Durchschnitt</subfield><subfield code="0">(DE-588)4188587-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Isolierte Singularität</subfield><subfield code="0">(DE-588)4123453-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Isolierte Singularität</subfield><subfield code="0">(DE-588)4123453-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vollständiger Durchschnitt</subfield><subfield code="0">(DE-588)4188587-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28674-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662720</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351226</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662720</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662720</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942257 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662720 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351226 |
oclc_num | 967697467 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 200 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Looijenga, E. 1948- Verfasser aut Isolated singular points on complete intersections E.J.N. Looijenga Cambridge Cambridge University Press 1984 1 online resource (xi, 200 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 77 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Singularity theory is not a field in itself, but rather an application of algebraic geometry, analytic geometry and differential analysis. The adjective 'singular' in the title refers here to singular points of complex-analytic or algebraic varieties or mappings. A tractable (and very natural) class of singularities to study are the isolated complete intersection singularities, and much progress has been made over the past decade in understanding these and their deformations Geometry, Algebraic Singularities (Mathematics) Vollständiger Durchschnitt (DE-588)4188587-9 gnd rswk-swf Isolierte Singularität (DE-588)4123453-4 gnd rswk-swf Isolierte Singularität (DE-588)4123453-4 s Vollständiger Durchschnitt (DE-588)4188587-9 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-28674-9 https://doi.org/10.1017/CBO9780511662720 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Looijenga, E. 1948- Isolated singular points on complete intersections Geometry, Algebraic Singularities (Mathematics) Vollständiger Durchschnitt (DE-588)4188587-9 gnd Isolierte Singularität (DE-588)4123453-4 gnd |
subject_GND | (DE-588)4188587-9 (DE-588)4123453-4 |
title | Isolated singular points on complete intersections |
title_auth | Isolated singular points on complete intersections |
title_exact_search | Isolated singular points on complete intersections |
title_full | Isolated singular points on complete intersections E.J.N. Looijenga |
title_fullStr | Isolated singular points on complete intersections E.J.N. Looijenga |
title_full_unstemmed | Isolated singular points on complete intersections E.J.N. Looijenga |
title_short | Isolated singular points on complete intersections |
title_sort | isolated singular points on complete intersections |
topic | Geometry, Algebraic Singularities (Mathematics) Vollständiger Durchschnitt (DE-588)4188587-9 gnd Isolierte Singularität (DE-588)4123453-4 gnd |
topic_facet | Geometry, Algebraic Singularities (Mathematics) Vollständiger Durchschnitt Isolierte Singularität |
url | https://doi.org/10.1017/CBO9780511662720 |
work_keys_str_mv | AT looijengae isolatedsingularpointsoncompleteintersections |