Volterra integral and functional equations:
The rapid development of the theories of Volterra integral and functional equations has been strongly promoted by their applications in physics, engineering and biology. This text shows that the theory of Volterra equations exhibits a rich variety of features not present in the theory of ordinary di...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1990
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 34 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The rapid development of the theories of Volterra integral and functional equations has been strongly promoted by their applications in physics, engineering and biology. This text shows that the theory of Volterra equations exhibits a rich variety of features not present in the theory of ordinary differential equations. The book is divided into three parts. The first considers linear theory and the second deals with quasilinear equations and existence problems for nonlinear equations, giving some general asymptotic results. Part III is devoted to frequency domain methods in the study of nonlinear equations. The entire text analyses n-dimensional rather than scalar equations, giving greater generality and wider applicability and facilitating generalizations to infinite-dimensional spaces. The book is generally self-contained and assumes only a basic knowledge of analysis. The many exercises illustrate the development of the theory and its applications, making this book accessible to researchers in all areas of integral and differential equations |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxii, 701 pages) |
ISBN: | 9780511662805 |
DOI: | 10.1017/CBO9780511662805 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942251 | ||
003 | DE-604 | ||
005 | 20220120 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1990 |||| o||u| ||||||eng d | ||
020 | |a 9780511662805 |c Online |9 978-0-511-66280-5 | ||
024 | 7 | |a 10.1017/CBO9780511662805 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662805 | ||
035 | |a (OCoLC)849795683 | ||
035 | |a (DE-599)BVBBV043942251 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.45 |2 20 | |
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
100 | 1 | |a Gripenberg, Gustaf |e Verfasser |0 (DE-588)114922276 |4 aut | |
245 | 1 | 0 | |a Volterra integral and functional equations |c G. Gripenberg, S.-O. Londen & O. Staffans |
246 | 1 | 3 | |a Volterra Integral & Functional Equations |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1990 | |
300 | |a 1 online resource (xxii, 701 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 34 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The rapid development of the theories of Volterra integral and functional equations has been strongly promoted by their applications in physics, engineering and biology. This text shows that the theory of Volterra equations exhibits a rich variety of features not present in the theory of ordinary differential equations. The book is divided into three parts. The first considers linear theory and the second deals with quasilinear equations and existence problems for nonlinear equations, giving some general asymptotic results. Part III is devoted to frequency domain methods in the study of nonlinear equations. The entire text analyses n-dimensional rather than scalar equations, giving greater generality and wider applicability and facilitating generalizations to infinite-dimensional spaces. The book is generally self-contained and assumes only a basic knowledge of analysis. The many exercises illustrate the development of the theory and its applications, making this book accessible to researchers in all areas of integral and differential equations | ||
650 | 4 | |a Volterra equations | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Functional equations | |
650 | 0 | 7 | |a Funktional-Differentialgleichung |0 (DE-588)4155668-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktional-Differentialgleichung |0 (DE-588)4155668-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |D s |
689 | 1 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Londen, Stig-Olof |e Sonstige |4 oth | |
700 | 1 | |a Staffans, Olof J. |d 1947- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-10306-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-37289-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662805 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351220 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662805 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662805 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884847607808 |
---|---|
any_adam_object | |
author | Gripenberg, Gustaf |
author_GND | (DE-588)114922276 |
author_facet | Gripenberg, Gustaf |
author_role | aut |
author_sort | Gripenberg, Gustaf |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV043942251 |
classification_rvk | SK 640 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662805 (OCoLC)849795683 (DE-599)BVBBV043942251 |
dewey-full | 515/.45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.45 |
dewey-search | 515/.45 |
dewey-sort | 3515 245 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662805 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03532nmm a2200589zcb4500</leader><controlfield tag="001">BV043942251</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662805</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66280-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662805</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662805</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849795683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942251</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.45</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gripenberg, Gustaf</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114922276</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Volterra integral and functional equations</subfield><subfield code="c">G. Gripenberg, S.-O. Londen & O. Staffans</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Volterra Integral & Functional Equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 701 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 34</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The rapid development of the theories of Volterra integral and functional equations has been strongly promoted by their applications in physics, engineering and biology. This text shows that the theory of Volterra equations exhibits a rich variety of features not present in the theory of ordinary differential equations. The book is divided into three parts. The first considers linear theory and the second deals with quasilinear equations and existence problems for nonlinear equations, giving some general asymptotic results. Part III is devoted to frequency domain methods in the study of nonlinear equations. The entire text analyses n-dimensional rather than scalar equations, giving greater generality and wider applicability and facilitating generalizations to infinite-dimensional spaces. The book is generally self-contained and assumes only a basic knowledge of analysis. The many exercises illustrate the development of the theory and its applications, making this book accessible to researchers in all areas of integral and differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktional-Differentialgleichung</subfield><subfield code="0">(DE-588)4155668-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktional-Differentialgleichung</subfield><subfield code="0">(DE-588)4155668-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Londen, Stig-Olof</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Staffans, Olof J.</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-10306-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-37289-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662805</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351220</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662805</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662805</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942251 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662805 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351220 |
oclc_num | 849795683 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 701 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Gripenberg, Gustaf Verfasser (DE-588)114922276 aut Volterra integral and functional equations G. Gripenberg, S.-O. Londen & O. Staffans Volterra Integral & Functional Equations Cambridge Cambridge University Press 1990 1 online resource (xxii, 701 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 34 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The rapid development of the theories of Volterra integral and functional equations has been strongly promoted by their applications in physics, engineering and biology. This text shows that the theory of Volterra equations exhibits a rich variety of features not present in the theory of ordinary differential equations. The book is divided into three parts. The first considers linear theory and the second deals with quasilinear equations and existence problems for nonlinear equations, giving some general asymptotic results. Part III is devoted to frequency domain methods in the study of nonlinear equations. The entire text analyses n-dimensional rather than scalar equations, giving greater generality and wider applicability and facilitating generalizations to infinite-dimensional spaces. The book is generally self-contained and assumes only a basic knowledge of analysis. The many exercises illustrate the development of the theory and its applications, making this book accessible to researchers in all areas of integral and differential equations Volterra equations Integral equations Functional equations Funktional-Differentialgleichung (DE-588)4155668-9 gnd rswk-swf Volterra-Gleichungen (DE-588)4137459-9 gnd rswk-swf Volterra-Integralgleichung (DE-588)4234593-5 gnd rswk-swf Funktional-Differentialgleichung (DE-588)4155668-9 s 1\p DE-604 Volterra-Integralgleichung (DE-588)4234593-5 s Volterra-Gleichungen (DE-588)4137459-9 s DE-604 Londen, Stig-Olof Sonstige oth Staffans, Olof J. 1947- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-10306-0 Erscheint auch als Druckausgabe 978-0-521-37289-3 https://doi.org/10.1017/CBO9780511662805 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gripenberg, Gustaf Volterra integral and functional equations Volterra equations Integral equations Functional equations Funktional-Differentialgleichung (DE-588)4155668-9 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Volterra-Integralgleichung (DE-588)4234593-5 gnd |
subject_GND | (DE-588)4155668-9 (DE-588)4137459-9 (DE-588)4234593-5 |
title | Volterra integral and functional equations |
title_alt | Volterra Integral & Functional Equations |
title_auth | Volterra integral and functional equations |
title_exact_search | Volterra integral and functional equations |
title_full | Volterra integral and functional equations G. Gripenberg, S.-O. Londen & O. Staffans |
title_fullStr | Volterra integral and functional equations G. Gripenberg, S.-O. Londen & O. Staffans |
title_full_unstemmed | Volterra integral and functional equations G. Gripenberg, S.-O. Londen & O. Staffans |
title_short | Volterra integral and functional equations |
title_sort | volterra integral and functional equations |
topic | Volterra equations Integral equations Functional equations Funktional-Differentialgleichung (DE-588)4155668-9 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Volterra-Integralgleichung (DE-588)4234593-5 gnd |
topic_facet | Volterra equations Integral equations Functional equations Funktional-Differentialgleichung Volterra-Gleichungen Volterra-Integralgleichung |
url | https://doi.org/10.1017/CBO9780511662805 |
work_keys_str_mv | AT gripenberggustaf volterraintegralandfunctionalequations AT londenstigolof volterraintegralandfunctionalequations AT staffansolofj volterraintegralandfunctionalequations AT gripenberggustaf volterraintegralfunctionalequations AT londenstigolof volterraintegralfunctionalequations AT staffansolofj volterraintegralfunctionalequations |