On L1-approximation:
This monograph is concerned with the qualitative theory of best L1-approximation from finite-dimensional subspaces. It presents a survey of recent research that extends 'classical' results concerned with best uniform approximation to the L1 case. The work is organized in such a way as to b...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1989
|
Schriftenreihe: | Cambridge tracts in mathematics
93 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | This monograph is concerned with the qualitative theory of best L1-approximation from finite-dimensional subspaces. It presents a survey of recent research that extends 'classical' results concerned with best uniform approximation to the L1 case. The work is organized in such a way as to be useful for self-study or as a text for advanced courses. It begins with a basic introduction to the concepts of approximation theory before addressing one- or two-sided best approximation from finite-dimensional subspaces and approaches to the computation of these. At the end of each chapter is a series of exercises; these give the reader an opportunity to test understanding and also contain some theoretical digressions and extensions of the text |
Beschreibung: | 1 Online-Ressource (x, 239 Seiten) |
ISBN: | 9780511526497 |
DOI: | 10.1017/CBO9780511526497 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942228 | ||
003 | DE-604 | ||
005 | 20190429 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1989 |||| o||u| ||||||eng d | ||
020 | |a 9780511526497 |c Online |9 978-0-511-52649-7 | ||
024 | 7 | |a 10.1017/CBO9780511526497 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526497 | ||
035 | |a (OCoLC)849785190 | ||
035 | |a (DE-599)BVBBV043942228 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 511/.4 |2 19eng | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Pinkus, Allan |d 1946- |e Verfasser |0 (DE-588)110369297 |4 aut | |
245 | 1 | 0 | |a On L1-approximation |c Allan M. Pinkus |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1989 | |
300 | |a 1 Online-Ressource (x, 239 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 93 | |
520 | |a This monograph is concerned with the qualitative theory of best L1-approximation from finite-dimensional subspaces. It presents a survey of recent research that extends 'classical' results concerned with best uniform approximation to the L1 case. The work is organized in such a way as to be useful for self-study or as a text for advanced courses. It begins with a basic introduction to the concepts of approximation theory before addressing one- or two-sided best approximation from finite-dimensional subspaces and approaches to the computation of these. At the end of each chapter is a series of exercises; these give the reader an opportunity to test understanding and also contain some theoretical digressions and extensions of the text | ||
650 | 4 | |a Approximation theory | |
650 | 4 | |a Least absolute deviations (Statistics) | |
650 | 0 | 7 | |a Čebyšev-Raum |0 (DE-588)4147436-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kleinste absolute Abweichung |0 (DE-588)4501130-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a L1-Approximation |0 (DE-588)4449479-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beste Approximation |0 (DE-588)4144932-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kleinste absolute Abweichung |0 (DE-588)4501130-8 |D s |
689 | 0 | 1 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a L1-Approximation |0 (DE-588)4449479-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Beste Approximation |0 (DE-588)4144932-0 |D s |
689 | 2 | 1 | |a Čebyšev-Raum |0 (DE-588)4147436-3 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 3 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-05769-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-36650-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526497 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351197 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511526497 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526497 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526497 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884810907648 |
---|---|
any_adam_object | |
author | Pinkus, Allan 1946- |
author_GND | (DE-588)110369297 |
author_facet | Pinkus, Allan 1946- |
author_role | aut |
author_sort | Pinkus, Allan 1946- |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV043942228 |
classification_rvk | SK 470 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526497 (OCoLC)849785190 (DE-599)BVBBV043942228 |
dewey-full | 511/.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.4 |
dewey-search | 511/.4 |
dewey-sort | 3511 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526497 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03330nmm a2200625zcb4500</leader><controlfield tag="001">BV043942228</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190429 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526497</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52649-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526497</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849785190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942228</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.4</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinkus, Allan</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110369297</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On L1-approximation</subfield><subfield code="c">Allan M. Pinkus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 239 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">93</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph is concerned with the qualitative theory of best L1-approximation from finite-dimensional subspaces. It presents a survey of recent research that extends 'classical' results concerned with best uniform approximation to the L1 case. The work is organized in such a way as to be useful for self-study or as a text for advanced courses. It begins with a basic introduction to the concepts of approximation theory before addressing one- or two-sided best approximation from finite-dimensional subspaces and approaches to the computation of these. At the end of each chapter is a series of exercises; these give the reader an opportunity to test understanding and also contain some theoretical digressions and extensions of the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least absolute deviations (Statistics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Čebyšev-Raum</subfield><subfield code="0">(DE-588)4147436-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kleinste absolute Abweichung</subfield><subfield code="0">(DE-588)4501130-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L1-Approximation</subfield><subfield code="0">(DE-588)4449479-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kleinste absolute Abweichung</subfield><subfield code="0">(DE-588)4501130-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">L1-Approximation</subfield><subfield code="0">(DE-588)4449479-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Čebyšev-Raum</subfield><subfield code="0">(DE-588)4147436-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-05769-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-36650-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526497</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351197</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526497</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526497</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526497</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942228 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511526497 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351197 |
oclc_num | 849785190 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (x, 239 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Pinkus, Allan 1946- Verfasser (DE-588)110369297 aut On L1-approximation Allan M. Pinkus Cambridge Cambridge University Press 1989 1 Online-Ressource (x, 239 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 93 This monograph is concerned with the qualitative theory of best L1-approximation from finite-dimensional subspaces. It presents a survey of recent research that extends 'classical' results concerned with best uniform approximation to the L1 case. The work is organized in such a way as to be useful for self-study or as a text for advanced courses. It begins with a basic introduction to the concepts of approximation theory before addressing one- or two-sided best approximation from finite-dimensional subspaces and approaches to the computation of these. At the end of each chapter is a series of exercises; these give the reader an opportunity to test understanding and also contain some theoretical digressions and extensions of the text Approximation theory Least absolute deviations (Statistics) Čebyšev-Raum (DE-588)4147436-3 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Kleinste absolute Abweichung (DE-588)4501130-8 gnd rswk-swf L1-Approximation (DE-588)4449479-8 gnd rswk-swf Beste Approximation (DE-588)4144932-0 gnd rswk-swf Kleinste absolute Abweichung (DE-588)4501130-8 s Approximationstheorie (DE-588)4120913-8 s DE-604 L1-Approximation (DE-588)4449479-8 s Beste Approximation (DE-588)4144932-0 s Čebyšev-Raum (DE-588)4147436-3 s Approximation (DE-588)4002498-2 s Erscheint auch als Druck-Ausgabe 978-0-521-05769-1 Erscheint auch als Druck-Ausgabe 978-0-521-36650-2 https://doi.org/10.1017/CBO9780511526497 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pinkus, Allan 1946- On L1-approximation Approximation theory Least absolute deviations (Statistics) Čebyšev-Raum (DE-588)4147436-3 gnd Approximationstheorie (DE-588)4120913-8 gnd Approximation (DE-588)4002498-2 gnd Kleinste absolute Abweichung (DE-588)4501130-8 gnd L1-Approximation (DE-588)4449479-8 gnd Beste Approximation (DE-588)4144932-0 gnd |
subject_GND | (DE-588)4147436-3 (DE-588)4120913-8 (DE-588)4002498-2 (DE-588)4501130-8 (DE-588)4449479-8 (DE-588)4144932-0 |
title | On L1-approximation |
title_auth | On L1-approximation |
title_exact_search | On L1-approximation |
title_full | On L1-approximation Allan M. Pinkus |
title_fullStr | On L1-approximation Allan M. Pinkus |
title_full_unstemmed | On L1-approximation Allan M. Pinkus |
title_short | On L1-approximation |
title_sort | on l1 approximation |
topic | Approximation theory Least absolute deviations (Statistics) Čebyšev-Raum (DE-588)4147436-3 gnd Approximationstheorie (DE-588)4120913-8 gnd Approximation (DE-588)4002498-2 gnd Kleinste absolute Abweichung (DE-588)4501130-8 gnd L1-Approximation (DE-588)4449479-8 gnd Beste Approximation (DE-588)4144932-0 gnd |
topic_facet | Approximation theory Least absolute deviations (Statistics) Čebyšev-Raum Approximationstheorie Approximation Kleinste absolute Abweichung L1-Approximation Beste Approximation |
url | https://doi.org/10.1017/CBO9780511526497 |
work_keys_str_mv | AT pinkusallan onl1approximation |