Modular representations of finite groups of Lie type:
Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Tagungsbericht E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2006
|
Schriftenreihe: | London Mathematical Society lecture note series
326 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xv, 233 pages) |
ISBN: | 9780511525940 |
DOI: | 10.1017/CBO9780511525940 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942227 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780511525940 |c Online |9 978-0-511-52594-0 | ||
024 | 7 | |a 10.1017/CBO9780511525940 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511525940 | ||
035 | |a (OCoLC)967697483 | ||
035 | |a (DE-599)BVBBV043942227 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.23 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Humphreys, James E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modular representations of finite groups of Lie type |c James E. Humphreys |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2006 | |
300 | |a 1 online resource (xv, 233 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 326 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |g 1 |t Finite groups of Lie type |g 2 |t Simple modules |g 3 |t Weyl modules and Lusztig's conjecture |g 4 |t Computation of weight multiplicities |g 5 |t Other aspects of simple modules |g 6 |t Tensor products |g 7 |t BN-pairs and induced modules |g 8 |t Blocks |g 9 |t Projective modules |g 10 |t Comparison with Frobenius kernels |g 11 |t Cartan invariants |g 12 |t Extensions of simple modules |g 13 |t Loewy series |g 14 |t Cohomology |g 15 |t Complexity and support varieties |g 16 |t Ordinary and modular representations |g 17 |t Deligne-Lusztig characters |g 18 |t groups G[subscript 2](q) |g 19 |t General and special linear groups |g 20 |t Suzuki and Ree groups |
520 | |a Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references | ||
650 | 4 | |a Modular representations of groups | |
650 | 4 | |a Representations of Lie groups | |
650 | 4 | |a Finite simple groups | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
711 | 2 | |a London Mathematical Society |a issuing body |j Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-67454-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511525940 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351196 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511525940 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511525940 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884806713344 |
---|---|
any_adam_object | |
author | Humphreys, James E. |
author_facet | Humphreys, James E. |
author_role | aut |
author_sort | Humphreys, James E. |
author_variant | j e h je jeh |
building | Verbundindex |
bvnumber | BV043942227 |
classification_rvk | SI 320 SK 340 |
collection | ZDB-20-CBO |
contents | Finite groups of Lie type Simple modules Weyl modules and Lusztig's conjecture Computation of weight multiplicities Other aspects of simple modules Tensor products BN-pairs and induced modules Blocks Projective modules Comparison with Frobenius kernels Cartan invariants Extensions of simple modules Loewy series Cohomology Complexity and support varieties Ordinary and modular representations Deligne-Lusztig characters groups G[subscript 2](q) General and special linear groups Suzuki and Ree groups |
ctrlnum | (ZDB-20-CBO)CR9780511525940 (OCoLC)967697483 (DE-599)BVBBV043942227 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511525940 |
format | Electronic Conference Proceeding eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03494nmm a2200541zcb4500</leader><controlfield tag="001">BV043942227</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511525940</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52594-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511525940</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511525940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967697483</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942227</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Humphreys, James E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular representations of finite groups of Lie type</subfield><subfield code="c">James E. Humphreys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 233 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">326</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="g">1</subfield><subfield code="t">Finite groups of Lie type</subfield><subfield code="g">2</subfield><subfield code="t">Simple modules</subfield><subfield code="g">3</subfield><subfield code="t">Weyl modules and Lusztig's conjecture</subfield><subfield code="g">4</subfield><subfield code="t">Computation of weight multiplicities</subfield><subfield code="g">5</subfield><subfield code="t">Other aspects of simple modules</subfield><subfield code="g">6</subfield><subfield code="t">Tensor products</subfield><subfield code="g">7</subfield><subfield code="t">BN-pairs and induced modules</subfield><subfield code="g">8</subfield><subfield code="t">Blocks</subfield><subfield code="g">9</subfield><subfield code="t">Projective modules</subfield><subfield code="g">10</subfield><subfield code="t">Comparison with Frobenius kernels</subfield><subfield code="g">11</subfield><subfield code="t">Cartan invariants</subfield><subfield code="g">12</subfield><subfield code="t">Extensions of simple modules</subfield><subfield code="g">13</subfield><subfield code="t">Loewy series</subfield><subfield code="g">14</subfield><subfield code="t">Cohomology</subfield><subfield code="g">15</subfield><subfield code="t">Complexity and support varieties</subfield><subfield code="g">16</subfield><subfield code="t">Ordinary and modular representations</subfield><subfield code="g">17</subfield><subfield code="t">Deligne-Lusztig characters</subfield><subfield code="g">18</subfield><subfield code="t">groups G[subscript 2](q)</subfield><subfield code="g">19</subfield><subfield code="t">General and special linear groups</subfield><subfield code="g">20</subfield><subfield code="t">Suzuki and Ree groups</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modular representations of groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite simple groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">London Mathematical Society</subfield><subfield code="a">issuing body</subfield><subfield code="j">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-67454-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511525940</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351196</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525940</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511525940</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942227 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511525940 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351196 |
oclc_num | 967697483 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xv, 233 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Humphreys, James E. Verfasser aut Modular representations of finite groups of Lie type James E. Humphreys Cambridge Cambridge University Press 2006 1 online resource (xv, 233 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 326 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1 Finite groups of Lie type 2 Simple modules 3 Weyl modules and Lusztig's conjecture 4 Computation of weight multiplicities 5 Other aspects of simple modules 6 Tensor products 7 BN-pairs and induced modules 8 Blocks 9 Projective modules 10 Comparison with Frobenius kernels 11 Cartan invariants 12 Extensions of simple modules 13 Loewy series 14 Cohomology 15 Complexity and support varieties 16 Ordinary and modular representations 17 Deligne-Lusztig characters 18 groups G[subscript 2](q) 19 General and special linear groups 20 Suzuki and Ree groups Finite groups of Lie type encompass most of the finite simple groups. Their representations and characters have been studied intensively for half a century, though some key problems remain unsolved. This is the first comprehensive treatment of the representation theory of finite groups of Lie type over a field of the defining prime characteristic. As a subtheme, the relationship between ordinary and modular representations is explored, in the context of Deligne-Lusztig characters. One goal has been to make the subject more accessible to those working in neighbouring parts of group theory, number theory, and topology. Core material is treated in detail, but the later chapters emphasize informal exposition accompanied by examples and precise references Modular representations of groups Representations of Lie groups Finite simple groups Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Lie-Gruppe (DE-588)4035695-4 s 1\p DE-604 London Mathematical Society issuing body Sonstige oth Erscheint auch als Druckausgabe 978-0-521-67454-6 https://doi.org/10.1017/CBO9780511525940 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Humphreys, James E. Modular representations of finite groups of Lie type Finite groups of Lie type Simple modules Weyl modules and Lusztig's conjecture Computation of weight multiplicities Other aspects of simple modules Tensor products BN-pairs and induced modules Blocks Projective modules Comparison with Frobenius kernels Cartan invariants Extensions of simple modules Loewy series Cohomology Complexity and support varieties Ordinary and modular representations Deligne-Lusztig characters groups G[subscript 2](q) General and special linear groups Suzuki and Ree groups Modular representations of groups Representations of Lie groups Finite simple groups Endliche Gruppe (DE-588)4014651-0 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4035695-4 |
title | Modular representations of finite groups of Lie type |
title_alt | Finite groups of Lie type Simple modules Weyl modules and Lusztig's conjecture Computation of weight multiplicities Other aspects of simple modules Tensor products BN-pairs and induced modules Blocks Projective modules Comparison with Frobenius kernels Cartan invariants Extensions of simple modules Loewy series Cohomology Complexity and support varieties Ordinary and modular representations Deligne-Lusztig characters groups G[subscript 2](q) General and special linear groups Suzuki and Ree groups |
title_auth | Modular representations of finite groups of Lie type |
title_exact_search | Modular representations of finite groups of Lie type |
title_full | Modular representations of finite groups of Lie type James E. Humphreys |
title_fullStr | Modular representations of finite groups of Lie type James E. Humphreys |
title_full_unstemmed | Modular representations of finite groups of Lie type James E. Humphreys |
title_short | Modular representations of finite groups of Lie type |
title_sort | modular representations of finite groups of lie type |
topic | Modular representations of groups Representations of Lie groups Finite simple groups Endliche Gruppe (DE-588)4014651-0 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Modular representations of groups Representations of Lie groups Finite simple groups Endliche Gruppe Lie-Gruppe |
url | https://doi.org/10.1017/CBO9780511525940 |
work_keys_str_mv | AT humphreysjamese modularrepresentationsoffinitegroupsoflietype AT londonmathematicalsocietyissuingbody modularrepresentationsoffinitegroupsoflietype |