A quantum groups primer:
This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | London Mathematical Society lecture note series
292 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians and takes a modern approach leading into knot theory, braided categories and noncommutative differential geometry. It should also be useful for mathematical physicists |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 169 pages) |
ISBN: | 9780511549892 |
DOI: | 10.1017/CBO9780511549892 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780511549892 |c Online |9 978-0-511-54989-2 | ||
024 | 7 | |a 10.1017/CBO9780511549892 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511549892 | ||
035 | |a (OCoLC)847068557 | ||
035 | |a (DE-599)BVBBV043942224 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.14/3 |2 21 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Majid, Shahn |e Verfasser |4 aut | |
245 | 1 | 0 | |a A quantum groups primer |c Shahn Majid |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (x, 169 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 292 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Coalgebras, bialgebras and Hopf algebras. Uq(b+) -- Dual pairing. SLq(2). Actions -- Coactions. Quantum plane A2q -- Automorphism quantum groups -- Quasitriangular structures -- Roots of Unity. uq(sl2) -- q-Binomials -- Quantum double. Dual-quasitriangular structures -- Braided categories -- (Co)module categories. Crossed modules -- q-Hecke algebras -- Rigid objects. Dual representations. Quantum dimension -- Knot invariants -- Hopf algebras in braided categories -- Braided differentiation -- Bosonisation. Inhomogeneous quantum groups -- Double bosonisation. Diagrammatic construction of uq(sl2) -- The braided group Uq(n- ). Construction of Uq(g) -- q-Serre relations -- R-matrix methods -- Group algebra, Hopf algebra factorisations. Bicrossproducts -- Lie bialgebras. Lie splittings. Iwasawa decomposition -- Poisson geometry. Noncommutative bundles. q-Sphere -- Connections. q-Monopole. Nonuniversal differentials | |
520 | |a This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians and takes a modern approach leading into knot theory, braided categories and noncommutative differential geometry. It should also be useful for mathematical physicists | ||
650 | 4 | |a Quantum groups | |
650 | 0 | 7 | |a Quantengruppe |0 (DE-588)4252437-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantengruppe |0 (DE-588)4252437-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-01041-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511549892 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351193 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511549892 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511549892 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884790984704 |
---|---|
any_adam_object | |
author | Majid, Shahn |
author_facet | Majid, Shahn |
author_role | aut |
author_sort | Majid, Shahn |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV043942224 |
classification_rvk | SI 320 SK 230 |
collection | ZDB-20-CBO |
contents | Coalgebras, bialgebras and Hopf algebras. Uq(b+) -- Dual pairing. SLq(2). Actions -- Coactions. Quantum plane A2q -- Automorphism quantum groups -- Quasitriangular structures -- Roots of Unity. uq(sl2) -- q-Binomials -- Quantum double. Dual-quasitriangular structures -- Braided categories -- (Co)module categories. Crossed modules -- q-Hecke algebras -- Rigid objects. Dual representations. Quantum dimension -- Knot invariants -- Hopf algebras in braided categories -- Braided differentiation -- Bosonisation. Inhomogeneous quantum groups -- Double bosonisation. Diagrammatic construction of uq(sl2) -- The braided group Uq(n- ). Construction of Uq(g) -- q-Serre relations -- R-matrix methods -- Group algebra, Hopf algebra factorisations. Bicrossproducts -- Lie bialgebras. Lie splittings. Iwasawa decomposition -- Poisson geometry. Noncommutative bundles. q-Sphere -- Connections. q-Monopole. Nonuniversal differentials |
ctrlnum | (ZDB-20-CBO)CR9780511549892 (OCoLC)847068557 (DE-599)BVBBV043942224 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1017/CBO9780511549892 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03425nmm a2200481zcb4500</leader><controlfield tag="001">BV043942224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511549892</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54989-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511549892</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511549892</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847068557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majid, Shahn</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A quantum groups primer</subfield><subfield code="c">Shahn Majid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 169 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">292</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Coalgebras, bialgebras and Hopf algebras. Uq(b+) -- Dual pairing. SLq(2). Actions -- Coactions. Quantum plane A2q -- Automorphism quantum groups -- Quasitriangular structures -- Roots of Unity. uq(sl2) -- q-Binomials -- Quantum double. Dual-quasitriangular structures -- Braided categories -- (Co)module categories. Crossed modules -- q-Hecke algebras -- Rigid objects. Dual representations. Quantum dimension -- Knot invariants -- Hopf algebras in braided categories -- Braided differentiation -- Bosonisation. Inhomogeneous quantum groups -- Double bosonisation. Diagrammatic construction of uq(sl2) -- The braided group Uq(n- ). Construction of Uq(g) -- q-Serre relations -- R-matrix methods -- Group algebra, Hopf algebra factorisations. Bicrossproducts -- Lie bialgebras. Lie splittings. Iwasawa decomposition -- Poisson geometry. Noncommutative bundles. q-Sphere -- Connections. q-Monopole. Nonuniversal differentials</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians and takes a modern approach leading into knot theory, braided categories and noncommutative differential geometry. It should also be useful for mathematical physicists</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-01041-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511549892</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351193</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549892</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549892</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942224 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511549892 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351193 |
oclc_num | 847068557 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 169 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Majid, Shahn Verfasser aut A quantum groups primer Shahn Majid Cambridge Cambridge University Press 2002 1 online resource (x, 169 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 292 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Coalgebras, bialgebras and Hopf algebras. Uq(b+) -- Dual pairing. SLq(2). Actions -- Coactions. Quantum plane A2q -- Automorphism quantum groups -- Quasitriangular structures -- Roots of Unity. uq(sl2) -- q-Binomials -- Quantum double. Dual-quasitriangular structures -- Braided categories -- (Co)module categories. Crossed modules -- q-Hecke algebras -- Rigid objects. Dual representations. Quantum dimension -- Knot invariants -- Hopf algebras in braided categories -- Braided differentiation -- Bosonisation. Inhomogeneous quantum groups -- Double bosonisation. Diagrammatic construction of uq(sl2) -- The braided group Uq(n- ). Construction of Uq(g) -- q-Serre relations -- R-matrix methods -- Group algebra, Hopf algebra factorisations. Bicrossproducts -- Lie bialgebras. Lie splittings. Iwasawa decomposition -- Poisson geometry. Noncommutative bundles. q-Sphere -- Connections. q-Monopole. Nonuniversal differentials This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians and takes a modern approach leading into knot theory, braided categories and noncommutative differential geometry. It should also be useful for mathematical physicists Quantum groups Quantengruppe (DE-588)4252437-4 gnd rswk-swf Quantengruppe (DE-588)4252437-4 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-01041-2 https://doi.org/10.1017/CBO9780511549892 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Majid, Shahn A quantum groups primer Coalgebras, bialgebras and Hopf algebras. Uq(b+) -- Dual pairing. SLq(2). Actions -- Coactions. Quantum plane A2q -- Automorphism quantum groups -- Quasitriangular structures -- Roots of Unity. uq(sl2) -- q-Binomials -- Quantum double. Dual-quasitriangular structures -- Braided categories -- (Co)module categories. Crossed modules -- q-Hecke algebras -- Rigid objects. Dual representations. Quantum dimension -- Knot invariants -- Hopf algebras in braided categories -- Braided differentiation -- Bosonisation. Inhomogeneous quantum groups -- Double bosonisation. Diagrammatic construction of uq(sl2) -- The braided group Uq(n- ). Construction of Uq(g) -- q-Serre relations -- R-matrix methods -- Group algebra, Hopf algebra factorisations. Bicrossproducts -- Lie bialgebras. Lie splittings. Iwasawa decomposition -- Poisson geometry. Noncommutative bundles. q-Sphere -- Connections. q-Monopole. Nonuniversal differentials Quantum groups Quantengruppe (DE-588)4252437-4 gnd |
subject_GND | (DE-588)4252437-4 |
title | A quantum groups primer |
title_auth | A quantum groups primer |
title_exact_search | A quantum groups primer |
title_full | A quantum groups primer Shahn Majid |
title_fullStr | A quantum groups primer Shahn Majid |
title_full_unstemmed | A quantum groups primer Shahn Majid |
title_short | A quantum groups primer |
title_sort | a quantum groups primer |
topic | Quantum groups Quantengruppe (DE-588)4252437-4 gnd |
topic_facet | Quantum groups Quantengruppe |
url | https://doi.org/10.1017/CBO9780511549892 |
work_keys_str_mv | AT majidshahn aquantumgroupsprimer |