Geometries on surfaces:
The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2001
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 84 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xxii, 490 pages) |
ISBN: | 9780511549656 |
DOI: | 10.1017/CBO9780511549656 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942223 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2001 |||| o||u| ||||||eng d | ||
020 | |a 9780511549656 |c Online |9 978-0-511-54965-6 | ||
024 | 7 | |a 10.1017/CBO9780511549656 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511549656 | ||
035 | |a (OCoLC)849898462 | ||
035 | |a (DE-599)BVBBV043942223 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 516/.5 |2 21 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Polster, Burkard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometries on surfaces |c Burkard Polster and Günter Steinke |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2001 | |
300 | |a 1 online resource (xxii, 490 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 84 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Geometries for Pedestrians |t Geometries of Points and Lines |t Geometries on Surfaces |t Flat Linear Spaces |t Models of the Classical Flat Projective Plane |t Convexity Theory |t Continuity of Geometric Operations and the Line Space |t Isomorphisms, Automorphism Groups, and Polarities |t Topological Planes and Flat Linear Spaces |t Classification with Respect to the Group Dimension |t Constructions |t Planes with Special Properties |t Other Invariants and Characterizations |t Related Geometries |t Spherical Circle Planes |t Models of the Classical Flat Mobius Plane |t Derived Planes and Topological Properties |t Constructions |t Groups of Automorphisms and Groups of Projectivities |t The Hering Types |t Characterizations of the Classical Plane |t Planes with Special Properties |t Subgeometries and Lie Geometries |t Toroidal Circle Planes |t Models of the Classical Flat Minkowski Plane |t Derived Planes and Topological Properties |t Constructions |t Automorphism Groups and Groups of Projectivities |t The Klein-Kroll Types |t Characterizations of the Classical Plane |t Planes with Special Properties |t Subgeometries and Lie Geometries |t Cylindrical Circle Planes |t Models of the Classical Flat Laguerre Plane |t Derived Planes and Topological Properties |t Constructions |t Automorphism Groups and Groups of Projectivities |t The Kleinewillinghofer Types |t Characterizations of the Classical Plane |t Planes with Special Properties |t Subgeometries and Lie Geometries |t Generalized Quadrangles |
520 | |a The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact | ||
650 | 4 | |a Geometry, Projective | |
650 | 4 | |a Surfaces | |
650 | 0 | 7 | |a Fläche |0 (DE-588)4129864-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fläche |0 (DE-588)4129864-0 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Steinke, Günter |d 1955- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-66058-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511549656 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351192 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511549656 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511549656 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884800421888 |
---|---|
any_adam_object | |
author | Polster, Burkard |
author_facet | Polster, Burkard |
author_role | aut |
author_sort | Polster, Burkard |
author_variant | b p bp |
building | Verbundindex |
bvnumber | BV043942223 |
classification_rvk | SK 370 SK 380 |
collection | ZDB-20-CBO |
contents | Geometries for Pedestrians Geometries of Points and Lines Geometries on Surfaces Flat Linear Spaces Models of the Classical Flat Projective Plane Convexity Theory Continuity of Geometric Operations and the Line Space Isomorphisms, Automorphism Groups, and Polarities Topological Planes and Flat Linear Spaces Classification with Respect to the Group Dimension Constructions Planes with Special Properties Other Invariants and Characterizations Related Geometries Spherical Circle Planes Models of the Classical Flat Mobius Plane Derived Planes and Topological Properties Groups of Automorphisms and Groups of Projectivities The Hering Types Characterizations of the Classical Plane Subgeometries and Lie Geometries Toroidal Circle Planes Models of the Classical Flat Minkowski Plane Automorphism Groups and Groups of Projectivities The Klein-Kroll Types Cylindrical Circle Planes Models of the Classical Flat Laguerre Plane The Kleinewillinghofer Types Generalized Quadrangles |
ctrlnum | (ZDB-20-CBO)CR9780511549656 (OCoLC)849898462 (DE-599)BVBBV043942223 |
dewey-full | 516/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.5 |
dewey-search | 516/.5 |
dewey-sort | 3516 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511549656 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04405nmm a2200529zcb4500</leader><controlfield tag="001">BV043942223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511549656</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54965-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511549656</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511549656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849898462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polster, Burkard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometries on surfaces</subfield><subfield code="c">Burkard Polster and Günter Steinke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 490 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 84</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Geometries for Pedestrians</subfield><subfield code="t">Geometries of Points and Lines</subfield><subfield code="t">Geometries on Surfaces</subfield><subfield code="t">Flat Linear Spaces</subfield><subfield code="t">Models of the Classical Flat Projective Plane</subfield><subfield code="t">Convexity Theory</subfield><subfield code="t">Continuity of Geometric Operations and the Line Space</subfield><subfield code="t">Isomorphisms, Automorphism Groups, and Polarities</subfield><subfield code="t">Topological Planes and Flat Linear Spaces</subfield><subfield code="t">Classification with Respect to the Group Dimension</subfield><subfield code="t">Constructions</subfield><subfield code="t">Planes with Special Properties</subfield><subfield code="t">Other Invariants and Characterizations</subfield><subfield code="t">Related Geometries</subfield><subfield code="t">Spherical Circle Planes</subfield><subfield code="t">Models of the Classical Flat Mobius Plane</subfield><subfield code="t">Derived Planes and Topological Properties</subfield><subfield code="t">Constructions</subfield><subfield code="t">Groups of Automorphisms and Groups of Projectivities</subfield><subfield code="t">The Hering Types</subfield><subfield code="t">Characterizations of the Classical Plane</subfield><subfield code="t">Planes with Special Properties</subfield><subfield code="t">Subgeometries and Lie Geometries</subfield><subfield code="t">Toroidal Circle Planes</subfield><subfield code="t">Models of the Classical Flat Minkowski Plane</subfield><subfield code="t">Derived Planes and Topological Properties</subfield><subfield code="t">Constructions</subfield><subfield code="t">Automorphism Groups and Groups of Projectivities</subfield><subfield code="t">The Klein-Kroll Types</subfield><subfield code="t">Characterizations of the Classical Plane</subfield><subfield code="t">Planes with Special Properties</subfield><subfield code="t">Subgeometries and Lie Geometries</subfield><subfield code="t">Cylindrical Circle Planes</subfield><subfield code="t">Models of the Classical Flat Laguerre Plane</subfield><subfield code="t">Derived Planes and Topological Properties</subfield><subfield code="t">Constructions</subfield><subfield code="t">Automorphism Groups and Groups of Projectivities</subfield><subfield code="t">The Kleinewillinghofer Types</subfield><subfield code="t">Characterizations of the Classical Plane</subfield><subfield code="t">Planes with Special Properties</subfield><subfield code="t">Subgeometries and Lie Geometries</subfield><subfield code="t">Generalized Quadrangles</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Projective</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steinke, Günter</subfield><subfield code="d">1955-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-66058-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511549656</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351192</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549656</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511549656</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942223 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511549656 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351192 |
oclc_num | 849898462 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xxii, 490 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Polster, Burkard Verfasser aut Geometries on surfaces Burkard Polster and Günter Steinke Cambridge Cambridge University Press 2001 1 online resource (xxii, 490 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 84 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Geometries for Pedestrians Geometries of Points and Lines Geometries on Surfaces Flat Linear Spaces Models of the Classical Flat Projective Plane Convexity Theory Continuity of Geometric Operations and the Line Space Isomorphisms, Automorphism Groups, and Polarities Topological Planes and Flat Linear Spaces Classification with Respect to the Group Dimension Constructions Planes with Special Properties Other Invariants and Characterizations Related Geometries Spherical Circle Planes Models of the Classical Flat Mobius Plane Derived Planes and Topological Properties Constructions Groups of Automorphisms and Groups of Projectivities The Hering Types Characterizations of the Classical Plane Planes with Special Properties Subgeometries and Lie Geometries Toroidal Circle Planes Models of the Classical Flat Minkowski Plane Derived Planes and Topological Properties Constructions Automorphism Groups and Groups of Projectivities The Klein-Kroll Types Characterizations of the Classical Plane Planes with Special Properties Subgeometries and Lie Geometries Cylindrical Circle Planes Models of the Classical Flat Laguerre Plane Derived Planes and Topological Properties Constructions Automorphism Groups and Groups of Projectivities The Kleinewillinghofer Types Characterizations of the Classical Plane Planes with Special Properties Subgeometries and Lie Geometries Generalized Quadrangles The projective, Möbius, Laguerre, and Minkowski planes over the real numbers are just a few examples of a host of fundamental classical topological geometries on surfaces. This book summarizes all known major results and open problems related to these classical point-line geometries and their close (nonclassical) relatives. Topics covered include: classical geometries; methods for constructing nonclassical geometries; classifications and characterizations of geometries. This work is related to many other fields including interpolation theory, convexity, the theory of pseudoline arrangements, topology, the theory of Lie groups, and many more. The authors detail these connections, some of which are well-known, but many much less so. Acting both as a reference for experts and as an accessible introduction for graduate students, this book will interest anyone wishing to know more about point-line geometries and the way they interact Geometry, Projective Surfaces Fläche (DE-588)4129864-0 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Fläche (DE-588)4129864-0 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Steinke, Günter 1955- Sonstige oth Erscheint auch als Druckausgabe 978-0-521-66058-7 https://doi.org/10.1017/CBO9780511549656 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Polster, Burkard Geometries on surfaces Geometries for Pedestrians Geometries of Points and Lines Geometries on Surfaces Flat Linear Spaces Models of the Classical Flat Projective Plane Convexity Theory Continuity of Geometric Operations and the Line Space Isomorphisms, Automorphism Groups, and Polarities Topological Planes and Flat Linear Spaces Classification with Respect to the Group Dimension Constructions Planes with Special Properties Other Invariants and Characterizations Related Geometries Spherical Circle Planes Models of the Classical Flat Mobius Plane Derived Planes and Topological Properties Groups of Automorphisms and Groups of Projectivities The Hering Types Characterizations of the Classical Plane Subgeometries and Lie Geometries Toroidal Circle Planes Models of the Classical Flat Minkowski Plane Automorphism Groups and Groups of Projectivities The Klein-Kroll Types Cylindrical Circle Planes Models of the Classical Flat Laguerre Plane The Kleinewillinghofer Types Generalized Quadrangles Geometry, Projective Surfaces Fläche (DE-588)4129864-0 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4129864-0 (DE-588)4020236-7 |
title | Geometries on surfaces |
title_alt | Geometries for Pedestrians Geometries of Points and Lines Geometries on Surfaces Flat Linear Spaces Models of the Classical Flat Projective Plane Convexity Theory Continuity of Geometric Operations and the Line Space Isomorphisms, Automorphism Groups, and Polarities Topological Planes and Flat Linear Spaces Classification with Respect to the Group Dimension Constructions Planes with Special Properties Other Invariants and Characterizations Related Geometries Spherical Circle Planes Models of the Classical Flat Mobius Plane Derived Planes and Topological Properties Groups of Automorphisms and Groups of Projectivities The Hering Types Characterizations of the Classical Plane Subgeometries and Lie Geometries Toroidal Circle Planes Models of the Classical Flat Minkowski Plane Automorphism Groups and Groups of Projectivities The Klein-Kroll Types Cylindrical Circle Planes Models of the Classical Flat Laguerre Plane The Kleinewillinghofer Types Generalized Quadrangles |
title_auth | Geometries on surfaces |
title_exact_search | Geometries on surfaces |
title_full | Geometries on surfaces Burkard Polster and Günter Steinke |
title_fullStr | Geometries on surfaces Burkard Polster and Günter Steinke |
title_full_unstemmed | Geometries on surfaces Burkard Polster and Günter Steinke |
title_short | Geometries on surfaces |
title_sort | geometries on surfaces |
topic | Geometry, Projective Surfaces Fläche (DE-588)4129864-0 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Geometry, Projective Surfaces Fläche Geometrie |
url | https://doi.org/10.1017/CBO9780511549656 |
work_keys_str_mv | AT polsterburkard geometriesonsurfaces AT steinkegunter geometriesonsurfaces |