Harmonic measure:
During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a careful survey of these results and an introduction to the branch of analysis which contains them. Many of these results, due to Bishop, Carleson, Jones, Makar...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2005
|
Schriftenreihe: | New mathematical monographs
2 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBW01 Volltext |
Zusammenfassung: | During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a careful survey of these results and an introduction to the branch of analysis which contains them. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff and others, appear here in paperback for the first time. The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the readers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 Online-Ressource (XV, 571 S.) |
ISBN: | 9780511546617 |
DOI: | 10.1017/CBO9780511546617 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942221 | ||
003 | DE-604 | ||
005 | 20181023 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780511546617 |c Online |9 978-0-511-54661-7 | ||
024 | 7 | |a 10.1017/CBO9780511546617 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511546617 | ||
035 | |a (OCoLC)850226985 | ||
035 | |a (DE-599)BVBBV043942221 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-20 | ||
082 | 0 | |a 515/.42 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Garnett, John B. |d 1940- |e Verfasser |0 (DE-588)13370856X |4 aut | |
245 | 1 | 0 | |a Harmonic measure |c John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2005 | |
300 | |a 1 Online-Ressource (XV, 571 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a New mathematical monographs |v 2 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a Jordan domains -- Finitely connected domains -- Potential theory -- External distance -- Applications and reverse inequalities -- Simply connected domains, part one -- Bloch functions and quasicircles -- Simply connected domains, part two -- Infinitely connected domains -- Rectifiability and quadratic expressions | |
520 | |a During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a careful survey of these results and an introduction to the branch of analysis which contains them. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff and others, appear here in paperback for the first time. The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the readers | ||
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Marshall, Donald E. |d 1947- |e Sonstige |0 (DE-588)135730929 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-47018-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-72060-1 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511546617 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351190 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511546617 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546617 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511546617 |l UBW01 |p ZDB-20-CBO |q UBW_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884792033280 |
---|---|
any_adam_object | |
author | Garnett, John B. 1940- |
author_GND | (DE-588)13370856X (DE-588)135730929 |
author_facet | Garnett, John B. 1940- |
author_role | aut |
author_sort | Garnett, John B. 1940- |
author_variant | j b g jb jbg |
building | Verbundindex |
bvnumber | BV043942221 |
classification_rvk | SK 430 SK 450 SK 700 |
collection | ZDB-20-CBO |
contents | Jordan domains -- Finitely connected domains -- Potential theory -- External distance -- Applications and reverse inequalities -- Simply connected domains, part one -- Bloch functions and quasicircles -- Simply connected domains, part two -- Infinitely connected domains -- Rectifiability and quadratic expressions |
ctrlnum | (ZDB-20-CBO)CR9780511546617 (OCoLC)850226985 (DE-599)BVBBV043942221 |
dewey-full | 515/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.42 |
dewey-search | 515/.42 |
dewey-sort | 3515 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511546617 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03169nmm a2200529zcb4500</leader><controlfield tag="001">BV043942221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181023 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546617</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54661-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511546617</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511546617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850226985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garnett, John B.</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13370856X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic measure</subfield><subfield code="c">John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 571 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Jordan domains -- Finitely connected domains -- Potential theory -- External distance -- Applications and reverse inequalities -- Simply connected domains, part one -- Bloch functions and quasicircles -- Simply connected domains, part two -- Infinitely connected domains -- Rectifiability and quadratic expressions</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a careful survey of these results and an introduction to the branch of analysis which contains them. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff and others, appear here in paperback for the first time. The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the readers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marshall, Donald E.</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135730929</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-47018-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-72060-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511546617</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351190</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546617</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546617</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511546617</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942221 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511546617 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351190 |
oclc_num | 850226985 |
open_access_boolean | |
owner | DE-12 DE-92 DE-20 |
owner_facet | DE-12 DE-92 DE-20 |
physical | 1 Online-Ressource (XV, 571 S.) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBW_Einzelkauf |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Garnett, John B. 1940- Verfasser (DE-588)13370856X aut Harmonic measure John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington) Cambridge Cambridge University Press 2005 1 Online-Ressource (XV, 571 S.) txt rdacontent c rdamedia cr rdacarrier New mathematical monographs 2 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Jordan domains -- Finitely connected domains -- Potential theory -- External distance -- Applications and reverse inequalities -- Simply connected domains, part one -- Bloch functions and quasicircles -- Simply connected domains, part two -- Infinitely connected domains -- Rectifiability and quadratic expressions During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a careful survey of these results and an introduction to the branch of analysis which contains them. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff and others, appear here in paperback for the first time. The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the readers Functions of complex variables Potential theory (Mathematics) Maßtheorie (DE-588)4074626-4 gnd rswk-swf Maßtheorie (DE-588)4074626-4 s DE-604 Marshall, Donald E. 1947- Sonstige (DE-588)135730929 oth Erscheint auch als Druckausgabe 978-0-521-47018-6 Erscheint auch als Druckausgabe 978-0-521-72060-1 https://doi.org/10.1017/CBO9780511546617 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Garnett, John B. 1940- Harmonic measure Jordan domains -- Finitely connected domains -- Potential theory -- External distance -- Applications and reverse inequalities -- Simply connected domains, part one -- Bloch functions and quasicircles -- Simply connected domains, part two -- Infinitely connected domains -- Rectifiability and quadratic expressions Functions of complex variables Potential theory (Mathematics) Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4074626-4 |
title | Harmonic measure |
title_auth | Harmonic measure |
title_exact_search | Harmonic measure |
title_full | Harmonic measure John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington) |
title_fullStr | Harmonic measure John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington) |
title_full_unstemmed | Harmonic measure John B. Garnett (University of California, Los Angeles), Donald E. Marshall (University of Washington) |
title_short | Harmonic measure |
title_sort | harmonic measure |
topic | Functions of complex variables Potential theory (Mathematics) Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Functions of complex variables Potential theory (Mathematics) Maßtheorie |
url | https://doi.org/10.1017/CBO9780511546617 |
work_keys_str_mv | AT garnettjohnb harmonicmeasure AT marshalldonalde harmonicmeasure |