Stopping time techniques for analysts and probabilists:
This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1984
|
Schriftenreihe: | London Mathematical Society lecture note series
100 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 URL des Erstveröffentlichers |
Zusammenfassung: | This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-( or super-) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xvi, 351 pages) |
ISBN: | 9780511526176 |
DOI: | 10.1017/CBO9780511526176 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942205 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1984 |||| o||u| ||||||eng d | ||
020 | |a 9780511526176 |c Online |9 978-0-511-52617-6 | ||
024 | 7 | |a 10.1017/CBO9780511526176 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511526176 | ||
035 | |a (OCoLC)967684110 | ||
035 | |a (DE-599)BVBBV043942205 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2/87 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Egghe, L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stopping time techniques for analysts and probabilists |c L. Egghe |
246 | 1 | 3 | |a Stopping Time Techniques for Analysts & Probabilists |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1984 | |
300 | |a 1 online resource (xvi, 351 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 100 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-( or super-) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory | ||
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Convergence | |
650 | 0 | 7 | |a Konvergenz |0 (DE-588)4032326-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stoppregel |0 (DE-588)4121731-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | 1 | |a Konvergenz |0 (DE-588)4032326-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stoppregel |0 (DE-588)4121731-7 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-31715-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511526176 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351174 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511526176 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511526176 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884746944512 |
---|---|
any_adam_object | |
author | Egghe, L. |
author_facet | Egghe, L. |
author_role | aut |
author_sort | Egghe, L. |
author_variant | l e le |
building | Verbundindex |
bvnumber | BV043942205 |
classification_rvk | SI 320 SK 820 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511526176 (OCoLC)967684110 (DE-599)BVBBV043942205 |
dewey-full | 519.2/87 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/87 |
dewey-search | 519.2/87 |
dewey-sort | 3519.2 287 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511526176 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03111nmm a2200541zcb4500</leader><controlfield tag="001">BV043942205</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526176</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-52617-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511526176</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511526176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967684110</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942205</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/87</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Egghe, L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stopping time techniques for analysts and probabilists</subfield><subfield code="c">L. Egghe</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Stopping Time Techniques for Analysts & Probabilists</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 351 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">100</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-( or super-) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoppregel</subfield><subfield code="0">(DE-588)4121731-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvergenz</subfield><subfield code="0">(DE-588)4032326-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stoppregel</subfield><subfield code="0">(DE-588)4121731-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-31715-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511526176</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351174</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526176</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511526176</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942205 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511526176 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351174 |
oclc_num | 967684110 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xvi, 351 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Egghe, L. Verfasser aut Stopping time techniques for analysts and probabilists L. Egghe Stopping Time Techniques for Analysts & Probabilists Cambridge Cambridge University Press 1984 1 online resource (xvi, 351 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 100 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book considers convergence of adapted sequences of real and Banach space-valued integrable functions, emphasizing the use of stopping time techniques. Not only are highly specialized results given, but also elementary applications of these results. The book starts by discussing the convergence theory of martingales and sub-( or super-) martingales with values in a Banach space with or without the Radon-Nikodym property. Several inequalities which are of use in the study of the convergence of more general adapted sequence such as (uniform) amarts, mils and pramarts are proved and sub- and superpramarts are discussed and applied to the convergence of pramarts. Most of the results have a strong relationship with (or in fact are characterizations of) topological or geometrical properties of Banach spaces. The book will interest research and graduate students in probability theory, functional analysis and measure theory, as well as proving a useful textbook for specialized courses on martingale theory Martingales (Mathematics) Convergence Konvergenz (DE-588)4032326-2 gnd rswk-swf Stoppregel (DE-588)4121731-7 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 s Konvergenz (DE-588)4032326-2 s DE-604 Stoppregel (DE-588)4121731-7 s Erscheint auch als Druckausgabe 978-0-521-31715-3 https://doi.org/10.1017/CBO9780511526176 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Egghe, L. Stopping time techniques for analysts and probabilists Martingales (Mathematics) Convergence Konvergenz (DE-588)4032326-2 gnd Stoppregel (DE-588)4121731-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4032326-2 (DE-588)4121731-7 (DE-588)4018916-8 |
title | Stopping time techniques for analysts and probabilists |
title_alt | Stopping Time Techniques for Analysts & Probabilists |
title_auth | Stopping time techniques for analysts and probabilists |
title_exact_search | Stopping time techniques for analysts and probabilists |
title_full | Stopping time techniques for analysts and probabilists L. Egghe |
title_fullStr | Stopping time techniques for analysts and probabilists L. Egghe |
title_full_unstemmed | Stopping time techniques for analysts and probabilists L. Egghe |
title_short | Stopping time techniques for analysts and probabilists |
title_sort | stopping time techniques for analysts and probabilists |
topic | Martingales (Mathematics) Convergence Konvergenz (DE-588)4032326-2 gnd Stoppregel (DE-588)4121731-7 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Martingales (Mathematics) Convergence Konvergenz Stoppregel Funktionalanalysis |
url | https://doi.org/10.1017/CBO9780511526176 |
work_keys_str_mv | AT egghel stoppingtimetechniquesforanalystsandprobabilists AT egghel stoppingtimetechniquesforanalystsprobabilists |