Geometric analysis of hyperbolic differential equations: an introduction
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2010
|
Schriftenreihe: | London Mathematical Society lecture note series
374 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (ix, 118 pages) |
ISBN: | 9781139107198 |
DOI: | 10.1017/CBO9781139107198 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942189 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2010 |||| o||u| ||||||eng d | ||
020 | |a 9781139107198 |c Online |9 978-1-139-10719-8 | ||
024 | 7 | |a 10.1017/CBO9781139107198 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139107198 | ||
035 | |a (OCoLC)852501433 | ||
035 | |a (DE-599)BVBBV043942189 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.3535 |2 22 | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
100 | 1 | |a Alinhac, S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric analysis of hyperbolic differential equations |b an introduction |c S. Alinhac |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2010 | |
300 | |a 1 online resource (ix, 118 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 374 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index | |
520 | |a Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Nonlinear wave equations | |
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Geometry, Differential | |
650 | 0 | 7 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 1 | |a Nichtlineare Wellengleichung |0 (DE-588)4042104-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-12822-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139107198 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351158 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781139107198 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139107198 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884718632960 |
---|---|
any_adam_object | |
author | Alinhac, S. |
author_facet | Alinhac, S. |
author_role | aut |
author_sort | Alinhac, S. |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV043942189 |
classification_rvk | SI 320 SK 540 SK 560 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index |
ctrlnum | (ZDB-20-CBO)CR9781139107198 (OCoLC)852501433 (DE-599)BVBBV043942189 |
dewey-full | 515/.3535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3535 |
dewey-search | 515/.3535 |
dewey-sort | 3515 43535 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139107198 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03186nmm a2200565zcb4500</leader><controlfield tag="001">BV043942189</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107198</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-10719-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139107198</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139107198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852501433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942189</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3535</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alinhac, S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric analysis of hyperbolic differential equations</subfield><subfield code="b">an introduction</subfield><subfield code="c">S. Alinhac</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 118 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">374</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear wave equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="0">(DE-588)4042104-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-12822-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139107198</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351158</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107198</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139107198</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942189 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781139107198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351158 |
oclc_num | 852501433 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (ix, 118 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Alinhac, S. Verfasser aut Geometric analysis of hyperbolic differential equations an introduction S. Alinhac Cambridge Cambridge University Press 2010 1 online resource (ix, 118 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 374 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required Quantentheorie Nonlinear wave equations Differential equations, Hyperbolic Quantum theory Geometry, Differential Nichtlineare Wellengleichung (DE-588)4042104-1 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s Nichtlineare Wellengleichung (DE-588)4042104-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-12822-3 https://doi.org/10.1017/CBO9781139107198 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Alinhac, S. Geometric analysis of hyperbolic differential equations an introduction 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index Quantentheorie Nonlinear wave equations Differential equations, Hyperbolic Quantum theory Geometry, Differential Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
subject_GND | (DE-588)4042104-1 (DE-588)4131213-2 |
title | Geometric analysis of hyperbolic differential equations an introduction |
title_auth | Geometric analysis of hyperbolic differential equations an introduction |
title_exact_search | Geometric analysis of hyperbolic differential equations an introduction |
title_full | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_fullStr | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_full_unstemmed | Geometric analysis of hyperbolic differential equations an introduction S. Alinhac |
title_short | Geometric analysis of hyperbolic differential equations |
title_sort | geometric analysis of hyperbolic differential equations an introduction |
title_sub | an introduction |
topic | Quantentheorie Nonlinear wave equations Differential equations, Hyperbolic Quantum theory Geometry, Differential Nichtlineare Wellengleichung (DE-588)4042104-1 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
topic_facet | Quantentheorie Nonlinear wave equations Differential equations, Hyperbolic Quantum theory Geometry, Differential Nichtlineare Wellengleichung Hyperbolische Differentialgleichung |
url | https://doi.org/10.1017/CBO9781139107198 |
work_keys_str_mv | AT alinhacs geometricanalysisofhyperbolicdifferentialequationsanintroduction |