Mathematical models in contact mechanics:

This text provides a complete introduction to the theory of variational inequalities with emphasis on contact mechanics. It covers existence, uniqueness and convergence results for variational inequalities, including the modelling and variational analysis of specific frictional contact problems with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sofonea, Mircea (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2012
Schriftenreihe:London Mathematical Society lecture note series 398
Schlagworte:
Online-Zugang:BSB01
FHN01
UBY01
Volltext
Zusammenfassung:This text provides a complete introduction to the theory of variational inequalities with emphasis on contact mechanics. It covers existence, uniqueness and convergence results for variational inequalities, including the modelling and variational analysis of specific frictional contact problems with elastic, viscoelastic and viscoplastic materials. New models of contact are presented, including contact of piezoelectric materials. Particular attention is paid to the study of history-dependent quasivariational inequalities and to their applications in the study of contact problems with unilateral constraints. The book fully illustrates the cross-fertilisation between modelling and applications on the one hand and nonlinear mathematical analysis on the other. Indeed, the reader will gain an understanding of how new and nonstandard models in contact mechanics lead to new types of variational inequalities and, conversely, how abstract results concerning variational inequalities can be applied to prove the unique solvability of the corresponding contact problems
Beschreibung:Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Beschreibung:1 online resource (xiv, 280 pages)
ISBN:9781139104166
DOI:10.1017/CBO9781139104166

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen