Algebraic combinatorics on words:
Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Comb...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2002
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 90 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 504 pages) |
ISBN: | 9781107326019 |
DOI: | 10.1017/CBO9781107326019 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942185 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781107326019 |c Online |9 978-1-107-32601-9 | ||
024 | 7 | |a 10.1017/CBO9781107326019 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781107326019 | ||
035 | |a (OCoLC)992921172 | ||
035 | |a (DE-599)BVBBV043942185 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 511/.6 |2 21 | |
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
084 | |a SK 170 |0 (DE-625)143221: |2 rvk | ||
100 | 1 | |a Lothaire, M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic combinatorics on words |c M. Lothaire |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2002 | |
300 | |a 1 online resource (xiii, 504 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 90 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | 0 | |t Finite and Infinite Words |t Semigroups |t Words |t Automata |t Generating series |t Symbolic dynamical systems |t Unavoidable sets |t Sturmian Words |t Equivalent definitions |t Standard words |t Sturmian morphisms |t Unavoidable Patterns |t Definitions and basic properties |t Deciding avoidability: the Zimin algorithm |t Avoidability on a fixed alphabet |t Sesquipowers |t Bi-ideal sequences |t Canonical factorizations |t Sesquipowers and recurrence |t Extensions of a theorem of Shirshov |t Finiteness conditions for semigroups |t The Plactic Monoid |t Schensted's algorithm |t Greene's invariants and the plactic monoid |t The Robinson--Schensted--Knuth correspondence |t Schur functions and the Littlewood--Richardson rule |t Coplactic operations |t Cyclage and canonical embeddings |t Codes |t X-factorizations |t Defect |t More defect |t A theorem of Schutzenberger |t Numeration Systems |t Standard representation of numbers |t Beta-expansions |t U-representations |t Representation of complex numbers |t Periodicity |t Periods in a finite word |t Local versus global periodicity |t Infinite words |t Centralizers of Noncommutative Series and Polynomials |t Cohn's centralizer theorem |t Euclidean division and principal right ideals |t Integral closure of the centralizer |t Homomorphisms into k[t] |t Bergman's centralizer theorem |t Free subalgebras and the defect theorem |t Appendix: some commutative algebra |t Transformations on Words and q-Calculus |t The q-binomial coefficients |t The MacMahon Verfahren |
520 | |a Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers | ||
650 | 4 | |a Combinatorial analysis | |
650 | 4 | |a Word problems (Mathematics) | |
650 | 0 | 7 | |a Algebraische Kombinatorik |0 (DE-588)4596755-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Formale Sprache |0 (DE-588)4017848-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Kombinatorik |0 (DE-588)4596755-6 |D s |
689 | 0 | 1 | |a Formale Sprache |0 (DE-588)4017848-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-18071-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-81220-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781107326019 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351154 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781107326019 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781107326019 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884721778688 |
---|---|
any_adam_object | |
author | Lothaire, M. |
author_facet | Lothaire, M. |
author_role | aut |
author_sort | Lothaire, M. |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV043942185 |
classification_rvk | SK 130 SK 170 |
collection | ZDB-20-CBO |
contents | Finite and Infinite Words Semigroups Words Automata Generating series Symbolic dynamical systems Unavoidable sets Sturmian Words Equivalent definitions Standard words Sturmian morphisms Unavoidable Patterns Definitions and basic properties Deciding avoidability: the Zimin algorithm Avoidability on a fixed alphabet Sesquipowers Bi-ideal sequences Canonical factorizations Sesquipowers and recurrence Extensions of a theorem of Shirshov Finiteness conditions for semigroups The Plactic Monoid Schensted's algorithm Greene's invariants and the plactic monoid The Robinson--Schensted--Knuth correspondence Schur functions and the Littlewood--Richardson rule Coplactic operations Cyclage and canonical embeddings Codes X-factorizations Defect More defect A theorem of Schutzenberger Numeration Systems Standard representation of numbers Beta-expansions U-representations Representation of complex numbers Periodicity Periods in a finite word Local versus global periodicity Infinite words Centralizers of Noncommutative Series and Polynomials Cohn's centralizer theorem Euclidean division and principal right ideals Integral closure of the centralizer Homomorphisms into k[t] Bergman's centralizer theorem Free subalgebras and the defect theorem Appendix: some commutative algebra Transformations on Words and q-Calculus The q-binomial coefficients The MacMahon Verfahren |
ctrlnum | (ZDB-20-CBO)CR9781107326019 (OCoLC)992921172 (DE-599)BVBBV043942185 |
dewey-full | 511/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.6 |
dewey-search | 511/.6 |
dewey-sort | 3511 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781107326019 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04295nmm a2200529zcb4500</leader><controlfield tag="001">BV043942185</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107326019</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-107-32601-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781107326019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781107326019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992921172</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942185</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.6</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lothaire, M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic combinatorics on words</subfield><subfield code="c">M. Lothaire</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 504 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 90</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t">Finite and Infinite Words</subfield><subfield code="t">Semigroups</subfield><subfield code="t">Words</subfield><subfield code="t">Automata</subfield><subfield code="t">Generating series</subfield><subfield code="t">Symbolic dynamical systems</subfield><subfield code="t">Unavoidable sets</subfield><subfield code="t">Sturmian Words</subfield><subfield code="t">Equivalent definitions</subfield><subfield code="t">Standard words</subfield><subfield code="t">Sturmian morphisms</subfield><subfield code="t">Unavoidable Patterns</subfield><subfield code="t">Definitions and basic properties</subfield><subfield code="t">Deciding avoidability: the Zimin algorithm</subfield><subfield code="t">Avoidability on a fixed alphabet</subfield><subfield code="t">Sesquipowers</subfield><subfield code="t">Bi-ideal sequences</subfield><subfield code="t">Canonical factorizations</subfield><subfield code="t">Sesquipowers and recurrence</subfield><subfield code="t">Extensions of a theorem of Shirshov</subfield><subfield code="t">Finiteness conditions for semigroups</subfield><subfield code="t">The Plactic Monoid</subfield><subfield code="t">Schensted's algorithm</subfield><subfield code="t">Greene's invariants and the plactic monoid</subfield><subfield code="t">The Robinson--Schensted--Knuth correspondence</subfield><subfield code="t">Schur functions and the Littlewood--Richardson rule</subfield><subfield code="t">Coplactic operations</subfield><subfield code="t">Cyclage and canonical embeddings</subfield><subfield code="t">Codes</subfield><subfield code="t">X-factorizations</subfield><subfield code="t">Defect</subfield><subfield code="t">More defect</subfield><subfield code="t">A theorem of Schutzenberger</subfield><subfield code="t">Numeration Systems</subfield><subfield code="t">Standard representation of numbers</subfield><subfield code="t">Beta-expansions</subfield><subfield code="t">U-representations</subfield><subfield code="t">Representation of complex numbers</subfield><subfield code="t">Periodicity</subfield><subfield code="t">Periods in a finite word</subfield><subfield code="t">Local versus global periodicity</subfield><subfield code="t">Infinite words</subfield><subfield code="t">Centralizers of Noncommutative Series and Polynomials</subfield><subfield code="t">Cohn's centralizer theorem</subfield><subfield code="t">Euclidean division and principal right ideals</subfield><subfield code="t">Integral closure of the centralizer</subfield><subfield code="t">Homomorphisms into k[t]</subfield><subfield code="t">Bergman's centralizer theorem</subfield><subfield code="t">Free subalgebras and the defect theorem</subfield><subfield code="t">Appendix: some commutative algebra</subfield><subfield code="t">Transformations on Words and q-Calculus</subfield><subfield code="t">The q-binomial coefficients</subfield><subfield code="t">The MacMahon Verfahren</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Word problems (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kombinatorik</subfield><subfield code="0">(DE-588)4596755-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Kombinatorik</subfield><subfield code="0">(DE-588)4596755-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Formale Sprache</subfield><subfield code="0">(DE-588)4017848-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-18071-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-81220-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781107326019</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351154</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107326019</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781107326019</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942185 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781107326019 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351154 |
oclc_num | 992921172 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 504 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Lothaire, M. Verfasser aut Algebraic combinatorics on words M. Lothaire Cambridge Cambridge University Press 2002 1 online resource (xiii, 504 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 90 Title from publisher's bibliographic system (viewed on 05 Oct 2015) Finite and Infinite Words Semigroups Words Automata Generating series Symbolic dynamical systems Unavoidable sets Sturmian Words Equivalent definitions Standard words Sturmian morphisms Unavoidable Patterns Definitions and basic properties Deciding avoidability: the Zimin algorithm Avoidability on a fixed alphabet Sesquipowers Bi-ideal sequences Canonical factorizations Sesquipowers and recurrence Extensions of a theorem of Shirshov Finiteness conditions for semigroups The Plactic Monoid Schensted's algorithm Greene's invariants and the plactic monoid The Robinson--Schensted--Knuth correspondence Schur functions and the Littlewood--Richardson rule Coplactic operations Cyclage and canonical embeddings Codes X-factorizations Defect More defect A theorem of Schutzenberger Numeration Systems Standard representation of numbers Beta-expansions U-representations Representation of complex numbers Periodicity Periods in a finite word Local versus global periodicity Infinite words Centralizers of Noncommutative Series and Polynomials Cohn's centralizer theorem Euclidean division and principal right ideals Integral closure of the centralizer Homomorphisms into k[t] Bergman's centralizer theorem Free subalgebras and the defect theorem Appendix: some commutative algebra Transformations on Words and q-Calculus The q-binomial coefficients The MacMahon Verfahren Combinatorics on words has arisen independently within several branches of mathematics, for instance number theory, group theory and probability, and appears frequently in problems related to theoretical computer science. The first unified treatment of the area was given in Lothaire's book Combinatorics on Words. Originally published in 2002, this book presents several more topics and provides deeper insights into subjects discussed in the previous volume. An introductory chapter provides the reader with all the necessary background material. There are numerous examples, full proofs whenever possible and a notes section discussing further developments in the area. This book is both a comprehensive introduction to the subject and a valuable reference source for researchers Combinatorial analysis Word problems (Mathematics) Algebraische Kombinatorik (DE-588)4596755-6 gnd rswk-swf Formale Sprache (DE-588)4017848-1 gnd rswk-swf Algebraische Kombinatorik (DE-588)4596755-6 s Formale Sprache (DE-588)4017848-1 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-18071-9 Erscheint auch als Druckausgabe 978-0-521-81220-7 https://doi.org/10.1017/CBO9781107326019 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lothaire, M. Algebraic combinatorics on words Finite and Infinite Words Semigroups Words Automata Generating series Symbolic dynamical systems Unavoidable sets Sturmian Words Equivalent definitions Standard words Sturmian morphisms Unavoidable Patterns Definitions and basic properties Deciding avoidability: the Zimin algorithm Avoidability on a fixed alphabet Sesquipowers Bi-ideal sequences Canonical factorizations Sesquipowers and recurrence Extensions of a theorem of Shirshov Finiteness conditions for semigroups The Plactic Monoid Schensted's algorithm Greene's invariants and the plactic monoid The Robinson--Schensted--Knuth correspondence Schur functions and the Littlewood--Richardson rule Coplactic operations Cyclage and canonical embeddings Codes X-factorizations Defect More defect A theorem of Schutzenberger Numeration Systems Standard representation of numbers Beta-expansions U-representations Representation of complex numbers Periodicity Periods in a finite word Local versus global periodicity Infinite words Centralizers of Noncommutative Series and Polynomials Cohn's centralizer theorem Euclidean division and principal right ideals Integral closure of the centralizer Homomorphisms into k[t] Bergman's centralizer theorem Free subalgebras and the defect theorem Appendix: some commutative algebra Transformations on Words and q-Calculus The q-binomial coefficients The MacMahon Verfahren Combinatorial analysis Word problems (Mathematics) Algebraische Kombinatorik (DE-588)4596755-6 gnd Formale Sprache (DE-588)4017848-1 gnd |
subject_GND | (DE-588)4596755-6 (DE-588)4017848-1 |
title | Algebraic combinatorics on words |
title_alt | Finite and Infinite Words Semigroups Words Automata Generating series Symbolic dynamical systems Unavoidable sets Sturmian Words Equivalent definitions Standard words Sturmian morphisms Unavoidable Patterns Definitions and basic properties Deciding avoidability: the Zimin algorithm Avoidability on a fixed alphabet Sesquipowers Bi-ideal sequences Canonical factorizations Sesquipowers and recurrence Extensions of a theorem of Shirshov Finiteness conditions for semigroups The Plactic Monoid Schensted's algorithm Greene's invariants and the plactic monoid The Robinson--Schensted--Knuth correspondence Schur functions and the Littlewood--Richardson rule Coplactic operations Cyclage and canonical embeddings Codes X-factorizations Defect More defect A theorem of Schutzenberger Numeration Systems Standard representation of numbers Beta-expansions U-representations Representation of complex numbers Periodicity Periods in a finite word Local versus global periodicity Infinite words Centralizers of Noncommutative Series and Polynomials Cohn's centralizer theorem Euclidean division and principal right ideals Integral closure of the centralizer Homomorphisms into k[t] Bergman's centralizer theorem Free subalgebras and the defect theorem Appendix: some commutative algebra Transformations on Words and q-Calculus The q-binomial coefficients The MacMahon Verfahren |
title_auth | Algebraic combinatorics on words |
title_exact_search | Algebraic combinatorics on words |
title_full | Algebraic combinatorics on words M. Lothaire |
title_fullStr | Algebraic combinatorics on words M. Lothaire |
title_full_unstemmed | Algebraic combinatorics on words M. Lothaire |
title_short | Algebraic combinatorics on words |
title_sort | algebraic combinatorics on words |
topic | Combinatorial analysis Word problems (Mathematics) Algebraische Kombinatorik (DE-588)4596755-6 gnd Formale Sprache (DE-588)4017848-1 gnd |
topic_facet | Combinatorial analysis Word problems (Mathematics) Algebraische Kombinatorik Formale Sprache |
url | https://doi.org/10.1017/CBO9781107326019 |
work_keys_str_mv | AT lothairem algebraiccombinatoricsonwords |