Bipartite graphs and their applications:
Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1998
|
Schriftenreihe: | Cambridge tracts in mathematics
131 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, the reader will also find many unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, chemistry, communication networks and computer science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory |
Beschreibung: | 1 Online-Ressource (xi, 259 Seiten) |
ISBN: | 9780511984068 |
DOI: | 10.1017/CBO9780511984068 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942182 | ||
003 | DE-604 | ||
005 | 20190313 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780511984068 |c Online |9 978-0-511-98406-8 | ||
024 | 7 | |a 10.1017/CBO9780511984068 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511984068 | ||
035 | |a (OCoLC)859643367 | ||
035 | |a (DE-599)BVBBV043942182 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 511/.5 |2 21 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Asratian, Armen S. |d 1951- |e Verfasser |0 (DE-588)142321842 |4 aut | |
245 | 1 | 0 | |a Bipartite graphs and their applications |c Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist |
246 | 1 | 3 | |a Bipartite Graphs & their Applications |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1998 | |
300 | |a 1 Online-Ressource (xi, 259 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 131 | |
520 | |a Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, the reader will also find many unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, chemistry, communication networks and computer science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory | ||
650 | 4 | |a Bipartite graphs | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bipartiter Graph |0 (DE-588)4145661-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphenklasse |0 (DE-588)4158051-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphenklasse |0 (DE-588)4158051-5 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 2 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 0 | 3 | |a Bipartiter Graph |0 (DE-588)4145661-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Denley, Tristan M. J. |d 1967- |e Sonstige |0 (DE-588)142322075 |4 oth | |
700 | 1 | |a Häggkvist, Roland |d 1950- |e Sonstige |0 (DE-588)142322148 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-59345-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-06512-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511984068 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351151 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511984068 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511984068 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511984068 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884723875840 |
---|---|
any_adam_object | |
author | Asratian, Armen S. 1951- |
author_GND | (DE-588)142321842 (DE-588)142322075 (DE-588)142322148 |
author_facet | Asratian, Armen S. 1951- |
author_role | aut |
author_sort | Asratian, Armen S. 1951- |
author_variant | a s a as asa |
building | Verbundindex |
bvnumber | BV043942182 |
classification_rvk | SK 890 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511984068 (OCoLC)859643367 (DE-599)BVBBV043942182 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511984068 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03354nmm a2200565zcb4500</leader><controlfield tag="001">BV043942182</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511984068</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98406-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511984068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511984068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859643367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942182</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asratian, Armen S.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142321842</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bipartite graphs and their applications</subfield><subfield code="c">Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Bipartite Graphs & their Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 259 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">131</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, the reader will also find many unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, chemistry, communication networks and computer science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipartite graphs</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bipartiter Graph</subfield><subfield code="0">(DE-588)4145661-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphenklasse</subfield><subfield code="0">(DE-588)4158051-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphenklasse</subfield><subfield code="0">(DE-588)4158051-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bipartiter Graph</subfield><subfield code="0">(DE-588)4145661-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Denley, Tristan M. J.</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)142322075</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Häggkvist, Roland</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)142322148</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-59345-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-06512-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511984068</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351151</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984068</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984068</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984068</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942182 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511984068 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351151 |
oclc_num | 859643367 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xi, 259 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Asratian, Armen S. 1951- Verfasser (DE-588)142321842 aut Bipartite graphs and their applications Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist Bipartite Graphs & their Applications Cambridge Cambridge University Press 1998 1 Online-Ressource (xi, 259 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 131 Bipartite graphs are perhaps the most basic of objects in graph theory, both from a theoretical and practical point of view. However, sometimes they have been considered only as a special class in some wider context. This book deals solely with bipartite graphs. Together with traditional material, the reader will also find many unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, chemistry, communication networks and computer science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory Bipartite graphs Graphentheorie (DE-588)4113782-6 gnd rswk-swf Bipartiter Graph (DE-588)4145661-0 gnd rswk-swf Graphenklasse (DE-588)4158051-5 gnd rswk-swf Graph (DE-588)4021842-9 gnd rswk-swf Graphenklasse (DE-588)4158051-5 s Graphentheorie (DE-588)4113782-6 s Graph (DE-588)4021842-9 s Bipartiter Graph (DE-588)4145661-0 s DE-604 Denley, Tristan M. J. 1967- Sonstige (DE-588)142322075 oth Häggkvist, Roland 1950- Sonstige (DE-588)142322148 oth Erscheint auch als Druck-Ausgabe 978-0-521-59345-8 Erscheint auch als Druck-Ausgabe 978-0-521-06512-2 https://doi.org/10.1017/CBO9780511984068 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Asratian, Armen S. 1951- Bipartite graphs and their applications Bipartite graphs Graphentheorie (DE-588)4113782-6 gnd Bipartiter Graph (DE-588)4145661-0 gnd Graphenklasse (DE-588)4158051-5 gnd Graph (DE-588)4021842-9 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)4145661-0 (DE-588)4158051-5 (DE-588)4021842-9 |
title | Bipartite graphs and their applications |
title_alt | Bipartite Graphs & their Applications |
title_auth | Bipartite graphs and their applications |
title_exact_search | Bipartite graphs and their applications |
title_full | Bipartite graphs and their applications Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist |
title_fullStr | Bipartite graphs and their applications Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist |
title_full_unstemmed | Bipartite graphs and their applications Armen S. Asratian, Tristan M.J. Denley, Roland Häggkvist |
title_short | Bipartite graphs and their applications |
title_sort | bipartite graphs and their applications |
topic | Bipartite graphs Graphentheorie (DE-588)4113782-6 gnd Bipartiter Graph (DE-588)4145661-0 gnd Graphenklasse (DE-588)4158051-5 gnd Graph (DE-588)4021842-9 gnd |
topic_facet | Bipartite graphs Graphentheorie Bipartiter Graph Graphenklasse Graph |
url | https://doi.org/10.1017/CBO9780511984068 |
work_keys_str_mv | AT asratianarmens bipartitegraphsandtheirapplications AT denleytristanmj bipartitegraphsandtheirapplications AT haggkvistroland bipartitegraphsandtheirapplications AT asratianarmens bipartitegraphstheirapplications AT denleytristanmj bipartitegraphstheirapplications AT haggkvistroland bipartitegraphstheirapplications |