Commutator calculus and groups of homotopy classes:
A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie al...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1981
|
Schriftenreihe: | London Mathematical Society lecture note series
50 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (160 pages) |
ISBN: | 9780511662706 |
DOI: | 10.1017/CBO9780511662706 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942174 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1981 |||| o||u| ||||||eng d | ||
020 | |a 9780511662706 |c Online |9 978-0-511-66270-6 | ||
024 | 7 | |a 10.1017/CBO9780511662706 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511662706 | ||
035 | |a (OCoLC)891424656 | ||
035 | |a (DE-599)BVBBV043942174 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Baues, Hans J. |d 1943- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Commutator calculus and groups of homotopy classes |c Hans Joachim Baues |
246 | 1 | 3 | |a Commutator Calculus & Groups of Homotopy Classes |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1981 | |
300 | |a 1 online resource (160 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 50 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory | ||
650 | 4 | |a Calculus | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopie |0 (DE-588)4025803-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abbildung |g Physik |0 (DE-588)4140973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Abbildung |g Physik |0 (DE-588)4140973-5 |D s |
689 | 0 | 1 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |D s |
689 | 1 | 1 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-28424-0 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511662706 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351143 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511662706 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511662706 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884710244352 |
---|---|
any_adam_object | |
author | Baues, Hans J. 1943- |
author_facet | Baues, Hans J. 1943- |
author_role | aut |
author_sort | Baues, Hans J. 1943- |
author_variant | h j b hj hjb |
building | Verbundindex |
bvnumber | BV043942174 |
classification_rvk | SI 320 SK 300 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511662706 (OCoLC)891424656 (DE-599)BVBBV043942174 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511662706 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03274nmm a2200625zcb4500</leader><controlfield tag="001">BV043942174</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662706</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-66270-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511662706</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511662706</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891424656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942174</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baues, Hans J.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutator calculus and groups of homotopy classes</subfield><subfield code="c">Hans Joachim Baues</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Commutator Calculus & Groups of Homotopy Classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (160 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">50</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4140973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abbildung</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4140973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-28424-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511662706</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351143</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662706</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511662706</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942174 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511662706 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351143 |
oclc_num | 891424656 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (160 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Baues, Hans J. 1943- Verfasser aut Commutator calculus and groups of homotopy classes Hans Joachim Baues Commutator Calculus & Groups of Homotopy Classes Cambridge Cambridge University Press 1981 1 online resource (160 pages) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 50 Title from publisher's bibliographic system (viewed on 05 Oct 2015) A fundamental problem of algebraic topology is the classification of homotopy types and homotopy classes of maps. In this work the author extends results of rational homotopy theory to a subring of the rationale. The methods of proof employ classical commutator calculus of nilpotent group and Lie algebra theory and rely on an extensive and systematic study of the algebraic properties of the classical homotopy operations (composition and addition of maps, smash products, Whitehead products and higher order James-Hopi invariants). The account is essentially self-contained and should be accessible to non-specialists and graduate students with some background in algebraic topology and homotopy theory Calculus Homotopy theory Homologietheorie (DE-588)4141714-8 gnd rswk-swf Abbildung Mathematik (DE-588)4000044-8 gnd rswk-swf Homotopie (DE-588)4025803-8 gnd rswk-swf Abbildung Physik (DE-588)4140973-5 gnd rswk-swf Abbildung Physik (DE-588)4140973-5 s Homotopie (DE-588)4025803-8 s 1\p DE-604 Abbildung Mathematik (DE-588)4000044-8 s 2\p DE-604 Homologietheorie (DE-588)4141714-8 s 3\p DE-604 Erscheint auch als Druckausgabe 978-0-521-28424-0 https://doi.org/10.1017/CBO9780511662706 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baues, Hans J. 1943- Commutator calculus and groups of homotopy classes Calculus Homotopy theory Homologietheorie (DE-588)4141714-8 gnd Abbildung Mathematik (DE-588)4000044-8 gnd Homotopie (DE-588)4025803-8 gnd Abbildung Physik (DE-588)4140973-5 gnd |
subject_GND | (DE-588)4141714-8 (DE-588)4000044-8 (DE-588)4025803-8 (DE-588)4140973-5 |
title | Commutator calculus and groups of homotopy classes |
title_alt | Commutator Calculus & Groups of Homotopy Classes |
title_auth | Commutator calculus and groups of homotopy classes |
title_exact_search | Commutator calculus and groups of homotopy classes |
title_full | Commutator calculus and groups of homotopy classes Hans Joachim Baues |
title_fullStr | Commutator calculus and groups of homotopy classes Hans Joachim Baues |
title_full_unstemmed | Commutator calculus and groups of homotopy classes Hans Joachim Baues |
title_short | Commutator calculus and groups of homotopy classes |
title_sort | commutator calculus and groups of homotopy classes |
topic | Calculus Homotopy theory Homologietheorie (DE-588)4141714-8 gnd Abbildung Mathematik (DE-588)4000044-8 gnd Homotopie (DE-588)4025803-8 gnd Abbildung Physik (DE-588)4140973-5 gnd |
topic_facet | Calculus Homotopy theory Homologietheorie Abbildung Mathematik Homotopie Abbildung Physik |
url | https://doi.org/10.1017/CBO9780511662706 |
work_keys_str_mv | AT baueshansj commutatorcalculusandgroupsofhomotopyclasses AT baueshansj commutatorcalculusgroupsofhomotopyclasses |