Triangulated categories in the representation theory of finite dimensional algebras:
This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1988
|
Schriftenreihe: | London Mathematical Society lecture note series
119 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (208 pages.) |
ISBN: | 9780511629228 |
DOI: | 10.1017/CBO9780511629228 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942172 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1988 |||| o||u| ||||||eng d | ||
020 | |a 9780511629228 |c Online |9 978-0-511-62922-8 | ||
024 | 7 | |a 10.1017/CBO9780511629228 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511629228 | ||
035 | |a (OCoLC)849785456 | ||
035 | |a (DE-599)BVBBV043942172 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512/.55 |2 19eng | |
084 | |a SI 320 |0 (DE-625)143123: |2 rvk | ||
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
100 | 1 | |a Happel, Dieter |d 1953- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Triangulated categories in the representation theory of finite dimensional algebras |c Dieter Happel |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1988 | |
300 | |a 1 online resource (208 pages.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 119 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras | ||
650 | 4 | |a Triangulated categories | |
650 | 4 | |a Representations of algebras | |
650 | 4 | |a Modules (Algebra) | |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Triangulation |0 (DE-588)4186017-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension n |0 (DE-588)4309313-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | 1 | |a Dimension n |0 (DE-588)4309313-9 |D s |
689 | 0 | 2 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | 3 | |a Triangulation |0 (DE-588)4186017-2 |D s |
689 | 0 | 4 | |a Kategorie |g Mathematik |0 (DE-588)4129930-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-33922-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511629228 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351141 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511629228 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511629228 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884702904320 |
---|---|
any_adam_object | |
author | Happel, Dieter 1953- |
author_facet | Happel, Dieter 1953- |
author_role | aut |
author_sort | Happel, Dieter 1953- |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV043942172 |
classification_rvk | SI 320 SK 260 SK 320 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511629228 (OCoLC)849785456 (DE-599)BVBBV043942172 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511629228 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03389nmm a2200601zcb4500</leader><controlfield tag="001">BV043942172</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511629228</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-62922-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511629228</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511629228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849785456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942172</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="0">(DE-625)143123:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Happel, Dieter</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangulated categories in the representation theory of finite dimensional algebras</subfield><subfield code="c">Dieter Happel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (208 pages.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">119</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triangulated categories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representations of algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Triangulation</subfield><subfield code="0">(DE-588)4186017-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Kategorie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4129930-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-33922-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511629228</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351141</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629228</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511629228</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942172 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511629228 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351141 |
oclc_num | 849785456 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (208 pages.) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Happel, Dieter 1953- Verfasser aut Triangulated categories in the representation theory of finite dimensional algebras Dieter Happel Cambridge Cambridge University Press 1988 1 online resource (208 pages.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 119 Title from publisher's bibliographic system (viewed on 05 Oct 2015) This book is an introduction to the use of triangulated categories in the study of representations of finite-dimensional algebras. In recent years representation theory has been an area of intense research and the author shows that derived categories of finite-dimensional algebras are a useful tool in studying tilting processes. Results on the structure of derived categories of hereditary algebras are used to investigate Dynkin algebras and interated tilted algebras. The author shows how triangulated categories arise naturally in the study of Frobenius categories. The study of trivial extension algebras and repetitive algebras is then developed using the triangulated structure on the stable category of the algebra's module category. With a comprehensive reference section, algebraists and research students in this field will find this an indispensable account of the theory of finite-dimensional algebras Triangulated categories Representations of algebras Modules (Algebra) Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf Triangulation (DE-588)4186017-2 gnd rswk-swf Dimension n (DE-588)4309313-9 gnd rswk-swf Kategorie Mathematik (DE-588)4129930-9 gnd rswk-swf Algebra (DE-588)4001156-2 s Dimension n (DE-588)4309313-9 s Darstellungstheorie (DE-588)4148816-7 s Triangulation (DE-588)4186017-2 s Kategorie Mathematik (DE-588)4129930-9 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-33922-3 https://doi.org/10.1017/CBO9780511629228 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Happel, Dieter 1953- Triangulated categories in the representation theory of finite dimensional algebras Triangulated categories Representations of algebras Modules (Algebra) Darstellungstheorie (DE-588)4148816-7 gnd Algebra (DE-588)4001156-2 gnd Triangulation (DE-588)4186017-2 gnd Dimension n (DE-588)4309313-9 gnd Kategorie Mathematik (DE-588)4129930-9 gnd |
subject_GND | (DE-588)4148816-7 (DE-588)4001156-2 (DE-588)4186017-2 (DE-588)4309313-9 (DE-588)4129930-9 |
title | Triangulated categories in the representation theory of finite dimensional algebras |
title_auth | Triangulated categories in the representation theory of finite dimensional algebras |
title_exact_search | Triangulated categories in the representation theory of finite dimensional algebras |
title_full | Triangulated categories in the representation theory of finite dimensional algebras Dieter Happel |
title_fullStr | Triangulated categories in the representation theory of finite dimensional algebras Dieter Happel |
title_full_unstemmed | Triangulated categories in the representation theory of finite dimensional algebras Dieter Happel |
title_short | Triangulated categories in the representation theory of finite dimensional algebras |
title_sort | triangulated categories in the representation theory of finite dimensional algebras |
topic | Triangulated categories Representations of algebras Modules (Algebra) Darstellungstheorie (DE-588)4148816-7 gnd Algebra (DE-588)4001156-2 gnd Triangulation (DE-588)4186017-2 gnd Dimension n (DE-588)4309313-9 gnd Kategorie Mathematik (DE-588)4129930-9 gnd |
topic_facet | Triangulated categories Representations of algebras Modules (Algebra) Darstellungstheorie Algebra Triangulation Dimension n Kategorie Mathematik |
url | https://doi.org/10.1017/CBO9780511629228 |
work_keys_str_mv | AT happeldieter triangulatedcategoriesintherepresentationtheoryoffinitedimensionalalgebras |