Geometry of chemical graphs: polycycles and two-faced maps
Polycycles and symmetric polyhedra appear as generalisations of graphs in the modelling of molecular structures, such as the Nobel prize winning fullerenes, occurring in chemistry and crystallography. The chemistry has inspired and informed many interesting questions in mathematics and computer scie...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 119 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Polycycles and symmetric polyhedra appear as generalisations of graphs in the modelling of molecular structures, such as the Nobel prize winning fullerenes, occurring in chemistry and crystallography. The chemistry has inspired and informed many interesting questions in mathematics and computer science, which in turn have suggested directions for synthesis of molecules. Here the authors give access to new results in the theory of polycycles and two-faced maps together with the relevant background material and mathematical tools for their study. Organised so that, after reading the introductory chapter, each chapter can be read independently from the others, the book should be accessible to researchers and students in graph theory, discrete geometry, and combinatorics, as well as to those in more applied areas such as mathematical chemistry and crystallography. Many of the results in the subject require the use of computer enumeration; the corresponding programs are available from the author's website |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 306 pages) |
ISBN: | 9780511721311 |
DOI: | 10.1017/CBO9780511721311 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942162 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511721311 |c Online |9 978-0-511-72131-1 | ||
024 | 7 | |a 10.1017/CBO9780511721311 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511721311 | ||
035 | |a (OCoLC)851046647 | ||
035 | |a (DE-599)BVBBV043942162 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 541.220151 |2 22 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Deza, M. |d 1939- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of chemical graphs |b polycycles and two-faced maps |c Michel Deza, Mathieu Dutour Sikirić |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (x, 306 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 119 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Introduction -- 2. Two-faced maps -- 3. Fullerenes as tilings of surfaces -- 4. Polycycles -- 5. Polycycles with given boundary -- 6. Symmetries of polycycles -- 7. Elementary polycycles -- 8. Applications of elementary decompositions to (r, q)-polycycles -- 9. Strictly face-regular spheres and tori -- 10. Parabolic weakly face-regular spheres -- 11. General properties of 3-valent face-regular maps -- 12. Spheres and tori that are aR[subscript i] -- 13. Frank-Kasper spheres and tori -- 14. Spheres and tori that are bR[subscript 1] -- 15. Spheres and tori that are bR[subscript 2] -- 16. Spheres and tori that are bR[subscript 3] -- 17. Spheres and tori that are bR[subscript 4] -- 18. Spheres and tori that are bR[subscript j] for j[greater than or equal to]5 -- 19. Icosahedral fulleroids | |
520 | |a Polycycles and symmetric polyhedra appear as generalisations of graphs in the modelling of molecular structures, such as the Nobel prize winning fullerenes, occurring in chemistry and crystallography. The chemistry has inspired and informed many interesting questions in mathematics and computer science, which in turn have suggested directions for synthesis of molecules. Here the authors give access to new results in the theory of polycycles and two-faced maps together with the relevant background material and mathematical tools for their study. Organised so that, after reading the introductory chapter, each chapter can be read independently from the others, the book should be accessible to researchers and students in graph theory, discrete geometry, and combinatorics, as well as to those in more applied areas such as mathematical chemistry and crystallography. Many of the results in the subject require the use of computer enumeration; the corresponding programs are available from the author's website | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Molecules / Models | |
650 | 4 | |a Chemical models / Mathematics | |
700 | 1 | |a Dutour Sikirić, Mathieu |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-87307-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511721311 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351131 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511721311 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511721311 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884660961280 |
---|---|
any_adam_object | |
author | Deza, M. 1939- |
author_facet | Deza, M. 1939- |
author_role | aut |
author_sort | Deza, M. 1939- |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV043942162 |
classification_rvk | SK 890 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. Two-faced maps -- 3. Fullerenes as tilings of surfaces -- 4. Polycycles -- 5. Polycycles with given boundary -- 6. Symmetries of polycycles -- 7. Elementary polycycles -- 8. Applications of elementary decompositions to (r, q)-polycycles -- 9. Strictly face-regular spheres and tori -- 10. Parabolic weakly face-regular spheres -- 11. General properties of 3-valent face-regular maps -- 12. Spheres and tori that are aR[subscript i] -- 13. Frank-Kasper spheres and tori -- 14. Spheres and tori that are bR[subscript 1] -- 15. Spheres and tori that are bR[subscript 2] -- 16. Spheres and tori that are bR[subscript 3] -- 17. Spheres and tori that are bR[subscript 4] -- 18. Spheres and tori that are bR[subscript j] for j[greater than or equal to]5 -- 19. Icosahedral fulleroids |
ctrlnum | (ZDB-20-CBO)CR9780511721311 (OCoLC)851046647 (DE-599)BVBBV043942162 |
dewey-full | 541.220151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.220151 |
dewey-search | 541.220151 |
dewey-sort | 3541.220151 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Mathematik |
doi_str_mv | 10.1017/CBO9780511721311 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03556nmm a2200457zcb4500</leader><controlfield tag="001">BV043942162</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721311</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-72131-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511721311</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511721311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)851046647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942162</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.220151</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deza, M.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of chemical graphs</subfield><subfield code="b">polycycles and two-faced maps</subfield><subfield code="c">Michel Deza, Mathieu Dutour Sikirić</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 306 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 119</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. Two-faced maps -- 3. Fullerenes as tilings of surfaces -- 4. Polycycles -- 5. Polycycles with given boundary -- 6. Symmetries of polycycles -- 7. Elementary polycycles -- 8. Applications of elementary decompositions to (r, q)-polycycles -- 9. Strictly face-regular spheres and tori -- 10. Parabolic weakly face-regular spheres -- 11. General properties of 3-valent face-regular maps -- 12. Spheres and tori that are aR[subscript i] -- 13. Frank-Kasper spheres and tori -- 14. Spheres and tori that are bR[subscript 1] -- 15. Spheres and tori that are bR[subscript 2] -- 16. Spheres and tori that are bR[subscript 3] -- 17. Spheres and tori that are bR[subscript 4] -- 18. Spheres and tori that are bR[subscript j] for j[greater than or equal to]5 -- 19. Icosahedral fulleroids</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Polycycles and symmetric polyhedra appear as generalisations of graphs in the modelling of molecular structures, such as the Nobel prize winning fullerenes, occurring in chemistry and crystallography. The chemistry has inspired and informed many interesting questions in mathematics and computer science, which in turn have suggested directions for synthesis of molecules. Here the authors give access to new results in the theory of polycycles and two-faced maps together with the relevant background material and mathematical tools for their study. Organised so that, after reading the introductory chapter, each chapter can be read independently from the others, the book should be accessible to researchers and students in graph theory, discrete geometry, and combinatorics, as well as to those in more applied areas such as mathematical chemistry and crystallography. Many of the results in the subject require the use of computer enumeration; the corresponding programs are available from the author's website</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules / Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical models / Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dutour Sikirić, Mathieu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-87307-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511721311</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351131</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721311</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511721311</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942162 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511721311 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351131 |
oclc_num | 851046647 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 306 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Deza, M. 1939- Verfasser aut Geometry of chemical graphs polycycles and two-faced maps Michel Deza, Mathieu Dutour Sikirić Cambridge Cambridge University Press 2008 1 online resource (x, 306 pages) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 119 Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Introduction -- 2. Two-faced maps -- 3. Fullerenes as tilings of surfaces -- 4. Polycycles -- 5. Polycycles with given boundary -- 6. Symmetries of polycycles -- 7. Elementary polycycles -- 8. Applications of elementary decompositions to (r, q)-polycycles -- 9. Strictly face-regular spheres and tori -- 10. Parabolic weakly face-regular spheres -- 11. General properties of 3-valent face-regular maps -- 12. Spheres and tori that are aR[subscript i] -- 13. Frank-Kasper spheres and tori -- 14. Spheres and tori that are bR[subscript 1] -- 15. Spheres and tori that are bR[subscript 2] -- 16. Spheres and tori that are bR[subscript 3] -- 17. Spheres and tori that are bR[subscript 4] -- 18. Spheres and tori that are bR[subscript j] for j[greater than or equal to]5 -- 19. Icosahedral fulleroids Polycycles and symmetric polyhedra appear as generalisations of graphs in the modelling of molecular structures, such as the Nobel prize winning fullerenes, occurring in chemistry and crystallography. The chemistry has inspired and informed many interesting questions in mathematics and computer science, which in turn have suggested directions for synthesis of molecules. Here the authors give access to new results in the theory of polycycles and two-faced maps together with the relevant background material and mathematical tools for their study. Organised so that, after reading the introductory chapter, each chapter can be read independently from the others, the book should be accessible to researchers and students in graph theory, discrete geometry, and combinatorics, as well as to those in more applied areas such as mathematical chemistry and crystallography. Many of the results in the subject require the use of computer enumeration; the corresponding programs are available from the author's website Mathematik Molecules / Models Chemical models / Mathematics Dutour Sikirić, Mathieu Sonstige oth Erscheint auch als Druckausgabe 978-0-521-87307-9 https://doi.org/10.1017/CBO9780511721311 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Deza, M. 1939- Geometry of chemical graphs polycycles and two-faced maps 1. Introduction -- 2. Two-faced maps -- 3. Fullerenes as tilings of surfaces -- 4. Polycycles -- 5. Polycycles with given boundary -- 6. Symmetries of polycycles -- 7. Elementary polycycles -- 8. Applications of elementary decompositions to (r, q)-polycycles -- 9. Strictly face-regular spheres and tori -- 10. Parabolic weakly face-regular spheres -- 11. General properties of 3-valent face-regular maps -- 12. Spheres and tori that are aR[subscript i] -- 13. Frank-Kasper spheres and tori -- 14. Spheres and tori that are bR[subscript 1] -- 15. Spheres and tori that are bR[subscript 2] -- 16. Spheres and tori that are bR[subscript 3] -- 17. Spheres and tori that are bR[subscript 4] -- 18. Spheres and tori that are bR[subscript j] for j[greater than or equal to]5 -- 19. Icosahedral fulleroids Mathematik Molecules / Models Chemical models / Mathematics |
title | Geometry of chemical graphs polycycles and two-faced maps |
title_auth | Geometry of chemical graphs polycycles and two-faced maps |
title_exact_search | Geometry of chemical graphs polycycles and two-faced maps |
title_full | Geometry of chemical graphs polycycles and two-faced maps Michel Deza, Mathieu Dutour Sikirić |
title_fullStr | Geometry of chemical graphs polycycles and two-faced maps Michel Deza, Mathieu Dutour Sikirić |
title_full_unstemmed | Geometry of chemical graphs polycycles and two-faced maps Michel Deza, Mathieu Dutour Sikirić |
title_short | Geometry of chemical graphs |
title_sort | geometry of chemical graphs polycycles and two faced maps |
title_sub | polycycles and two-faced maps |
topic | Mathematik Molecules / Models Chemical models / Mathematics |
topic_facet | Mathematik Molecules / Models Chemical models / Mathematics |
url | https://doi.org/10.1017/CBO9780511721311 |
work_keys_str_mv | AT dezam geometryofchemicalgraphspolycyclesandtwofacedmaps AT dutoursikiricmathieu geometryofchemicalgraphspolycyclesandtwofacedmaps |