Path integral methods in quantum field theory:
This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1987
|
Schriftenreihe: | Cambridge monographs on mathematical physics
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 339 pages) |
ISBN: | 9780511564055 |
DOI: | 10.1017/CBO9780511564055 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043942133 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1987 |||| o||u| ||||||eng d | ||
020 | |a 9780511564055 |c Online |9 978-0-511-56405-5 | ||
024 | 7 | |a 10.1017/CBO9780511564055 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511564055 | ||
035 | |a (OCoLC)891427473 | ||
035 | |a (DE-599)BVBBV043942133 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 530.1/43 |2 19eng | |
084 | |a UK 4500 |0 (DE-625)145802: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
100 | 1 | |a Rivers, R. J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Path integral methods in quantum field theory |c R.J. Rivers |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1987 | |
300 | |a 1 online resource (xi, 339 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on mathematical physics | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory | ||
650 | 4 | |a Path integrals | |
650 | 4 | |a Quantum field theory | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-25979-8 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-36870-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511564055 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351103 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511564055 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511564055 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884610629632 |
---|---|
any_adam_object | |
author | Rivers, R. J. |
author_facet | Rivers, R. J. |
author_role | aut |
author_sort | Rivers, R. J. |
author_variant | r j r rj rjr |
building | Verbundindex |
bvnumber | BV043942133 |
classification_rvk | UK 4500 UO 4000 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511564055 (OCoLC)891427473 (DE-599)BVBBV043942133 |
dewey-full | 530.1/43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/43 |
dewey-search | 530.1/43 |
dewey-sort | 3530.1 243 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1017/CBO9780511564055 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03181nmm a2200517zc 4500</leader><controlfield tag="001">BV043942133</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511564055</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-56405-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511564055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511564055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)891427473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1/43</subfield><subfield code="2">19eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rivers, R. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Path integral methods in quantum field theory</subfield><subfield code="c">R.J. Rivers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 339 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-25979-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-36870-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511564055</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351103</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564055</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511564055</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942133 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511564055 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351103 |
oclc_num | 891427473 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xi, 339 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on mathematical physics |
spelling | Rivers, R. J. Verfasser aut Path integral methods in quantum field theory R.J. Rivers Cambridge Cambridge University Press 1987 1 online resource (xi, 339 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on mathematical physics Title from publisher's bibliographic system (viewed on 05 Oct 2015) This is a concise graduate level introduction to analytical functional methods in quantum field theory. Functional integral methods provide relatively simple solutions to a wide range of problems in quantum field theory. After introducing the basic mathematical background, this book goes on to study applications and consequences of the formalism to the study of series expansions, measure, phase transitions, physics on spaces with nontrivial topologies, stochastic quantisation, fermions, QED, non-abelian gauge theories, symmetry breaking, the effective potential, finite temperature field theory, instantons and compositeness. Serious attention is paid to the shortcomings of the conventional formalism (e.g. problems of measure) as well as detailed appraisal of the ambiguities of series summation. This book will be of great use to graduate students in theoretical physics wishing to learn the use of functional integrals in quantum field theory. It will also be a useful reference for researchers in theoretical physics, especially those with an interest in experimental and theoretical particle physics and quantum field theory Path integrals Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Pfadintegral (DE-588)4173973-5 s 1\p DE-604 Erscheint auch als Druckausgabe 978-0-521-25979-8 Erscheint auch als Druckausgabe 978-0-521-36870-4 https://doi.org/10.1017/CBO9780511564055 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rivers, R. J. Path integral methods in quantum field theory Path integrals Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4173973-5 |
title | Path integral methods in quantum field theory |
title_auth | Path integral methods in quantum field theory |
title_exact_search | Path integral methods in quantum field theory |
title_full | Path integral methods in quantum field theory R.J. Rivers |
title_fullStr | Path integral methods in quantum field theory R.J. Rivers |
title_full_unstemmed | Path integral methods in quantum field theory R.J. Rivers |
title_short | Path integral methods in quantum field theory |
title_sort | path integral methods in quantum field theory |
topic | Path integrals Quantum field theory Quantenfeldtheorie (DE-588)4047984-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Path integrals Quantum field theory Quantenfeldtheorie Pfadintegral |
url | https://doi.org/10.1017/CBO9780511564055 |
work_keys_str_mv | AT riversrj pathintegralmethodsinquantumfieldtheory |