Orbifolds and stringy topology:
An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2007
|
Schriftenreihe: | Cambridge tracts in mathematics
171 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples |
Beschreibung: | 1 Online-Ressource (xi, 149 Seiten) |
ISBN: | 9780511543081 |
DOI: | 10.1017/CBO9780511543081 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942123 | ||
003 | DE-604 | ||
005 | 20190308 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2007 |||| o||u| ||||||eng d | ||
020 | |a 9780511543081 |c Online |9 978-0-511-54308-1 | ||
024 | 7 | |a 10.1017/CBO9780511543081 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543081 | ||
035 | |a (OCoLC)850628816 | ||
035 | |a (DE-599)BVBBV043942123 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 514.34 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Adem, Alejandro |d 1961- |e Verfasser |0 (DE-588)113949790 |4 aut | |
245 | 1 | 0 | |a Orbifolds and stringy topology |c Alejandro Adem, Johann Leida and Yongbin Ruan |
246 | 1 | 3 | |a Orbifolds & Stringy Topology |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2007 | |
300 | |a 1 Online-Ressource (xi, 149 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 171 | |
505 | 8 | |a Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology | |
520 | |a An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Orbifolds | |
650 | 4 | |a Homology theory | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a String models | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Orbifaltigkeit |0 (DE-588)4667606-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Orbifaltigkeit |0 (DE-588)4667606-5 |D s |
689 | 0 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Leida, Johann |e Sonstige |0 (DE-588)140967656 |4 oth | |
700 | 1 | |a Ruan, Yongbin |e Sonstige |0 (DE-588)140967664 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-87004-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543081 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351093 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511543081 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543081 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543081 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884600143872 |
---|---|
any_adam_object | |
author | Adem, Alejandro 1961- |
author_GND | (DE-588)113949790 (DE-588)140967656 (DE-588)140967664 |
author_facet | Adem, Alejandro 1961- |
author_role | aut |
author_sort | Adem, Alejandro 1961- |
author_variant | a a aa |
building | Verbundindex |
bvnumber | BV043942123 |
classification_rvk | SK 340 |
collection | ZDB-20-CBO |
contents | Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology |
ctrlnum | (ZDB-20-CBO)CR9780511543081 (OCoLC)850628816 (DE-599)BVBBV043942123 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511543081 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03437nmm a2200601zcb4500</leader><controlfield tag="001">BV043942123</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190308 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543081</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54308-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543081</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850628816</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adem, Alejandro</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113949790</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orbifolds and stringy topology</subfield><subfield code="c">Alejandro Adem, Johann Leida and Yongbin Ruan</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Orbifolds & Stringy Topology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 149 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">171</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orbifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">String models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orbifaltigkeit</subfield><subfield code="0">(DE-588)4667606-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Orbifaltigkeit</subfield><subfield code="0">(DE-588)4667606-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leida, Johann</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)140967656</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Yongbin</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)140967664</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-87004-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543081</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351093</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543081</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543081</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543081</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942123 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511543081 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351093 |
oclc_num | 850628816 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xi, 149 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Adem, Alejandro 1961- Verfasser (DE-588)113949790 aut Orbifolds and stringy topology Alejandro Adem, Johann Leida and Yongbin Ruan Orbifolds & Stringy Topology Cambridge Cambridge University Press 2007 1 Online-Ressource (xi, 149 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 171 Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology An introduction to the theory of orbifolds from a modern perspective, combining techniques from geometry, algebraic topology and algebraic geometry. One of the main motivations, and a major source of examples, is string theory, where orbifolds play an important role. The subject is first developed following the classical description analogous to manifold theory, after which the book branches out to include the useful description of orbifolds provided by groupoids, as well as many examples in the context of algebraic geometry. Classical invariants such as de Rham cohomology and bundle theory are developed, a careful study of orbifold morphisms is provided, and the topic of orbifold K-theory is covered. The heart of this book, however, is a detailed description of the Chen-Ruan cohomology, which introduces a product for orbifolds and has had significant impact. The final chapter includes explicit computations for a number of interesting examples Quantentheorie Orbifolds Homology theory Quantum theory String models Topology Orbifaltigkeit (DE-588)4667606-5 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Orbifaltigkeit (DE-588)4667606-5 s Topologie (DE-588)4060425-1 s DE-604 Leida, Johann Sonstige (DE-588)140967656 oth Ruan, Yongbin Sonstige (DE-588)140967664 oth Erscheint auch als Druck-Ausgabe 978-0-521-87004-7 https://doi.org/10.1017/CBO9780511543081 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Adem, Alejandro 1961- Orbifolds and stringy topology Foundations -- Cohomology, bundles and morphisms -- Orbifold K-theory -- Chen-Ruan cohomology -- Calculating Chen-Ruan cohomology Quantentheorie Orbifolds Homology theory Quantum theory String models Topology Orbifaltigkeit (DE-588)4667606-5 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4667606-5 (DE-588)4037379-4 (DE-588)4060425-1 |
title | Orbifolds and stringy topology |
title_alt | Orbifolds & Stringy Topology |
title_auth | Orbifolds and stringy topology |
title_exact_search | Orbifolds and stringy topology |
title_full | Orbifolds and stringy topology Alejandro Adem, Johann Leida and Yongbin Ruan |
title_fullStr | Orbifolds and stringy topology Alejandro Adem, Johann Leida and Yongbin Ruan |
title_full_unstemmed | Orbifolds and stringy topology Alejandro Adem, Johann Leida and Yongbin Ruan |
title_short | Orbifolds and stringy topology |
title_sort | orbifolds and stringy topology |
topic | Quantentheorie Orbifolds Homology theory Quantum theory String models Topology Orbifaltigkeit (DE-588)4667606-5 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Quantentheorie Orbifolds Homology theory Quantum theory String models Topology Orbifaltigkeit Mannigfaltigkeit Topologie |
url | https://doi.org/10.1017/CBO9780511543081 |
work_keys_str_mv | AT ademalejandro orbifoldsandstringytopology AT leidajohann orbifoldsandstringytopology AT ruanyongbin orbifoldsandstringytopology AT ademalejandro orbifoldsstringytopology AT leidajohann orbifoldsstringytopology AT ruanyongbin orbifoldsstringytopology |