Affine Hecke algebras and orthogonal polynomials:
In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic redu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2003
|
Schriftenreihe: | Cambridge tracts in mathematics
157 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey–Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality |
Beschreibung: | 1 Online-Ressource (ix, 175 Seiten) |
ISBN: | 9780511542824 |
DOI: | 10.1017/CBO9780511542824 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942121 | ||
003 | DE-604 | ||
005 | 20190423 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780511542824 |c Online |9 978-0-511-54282-4 | ||
024 | 7 | |a 10.1017/CBO9780511542824 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511542824 | ||
035 | |a (OCoLC)850028306 | ||
035 | |a (DE-599)BVBBV043942121 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512/.55 |2 21 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
100 | 1 | |a Macdonald, Ian G. |d 1928- |e Verfasser |0 (DE-588)123369258 |4 aut | |
245 | 1 | 0 | |a Affine Hecke algebras and orthogonal polynomials |c I.G. Macdoald |
246 | 1 | 3 | |a Affine Hecke Algebras & Orthogonal Polynomials |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (ix, 175 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 157 | |
505 | 8 | |a Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index | |
520 | |a In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey–Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality | ||
650 | 4 | |a Hecke algebras | |
650 | 4 | |a Orthogonal polynomials | |
650 | 0 | 7 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hecke-Algebra |0 (DE-588)4159341-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hecke-Algebra |0 (DE-588)4159341-8 |D s |
689 | 0 | 1 | |a Orthogonale Polynome |0 (DE-588)4172863-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-521-82472-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511542824 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351091 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511542824 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542824 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511542824 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884588609536 |
---|---|
any_adam_object | |
author | Macdonald, Ian G. 1928- |
author_GND | (DE-588)123369258 |
author_facet | Macdonald, Ian G. 1928- |
author_role | aut |
author_sort | Macdonald, Ian G. 1928- |
author_variant | i g m ig igm |
building | Verbundindex |
bvnumber | BV043942121 |
classification_rvk | SK 230 |
collection | ZDB-20-CBO |
contents | Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index |
ctrlnum | (ZDB-20-CBO)CR9780511542824 (OCoLC)850028306 (DE-599)BVBBV043942121 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511542824 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03192nmm a2200505zcb4500</leader><controlfield tag="001">BV043942121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190423 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542824</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54282-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511542824</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511542824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850028306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Macdonald, Ian G.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123369258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Affine Hecke algebras and orthogonal polynomials</subfield><subfield code="c">I.G. Macdoald</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Affine Hecke Algebras & Orthogonal Polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 175 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">157</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey–Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal polynomials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hecke-Algebra</subfield><subfield code="0">(DE-588)4159341-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Orthogonale Polynome</subfield><subfield code="0">(DE-588)4172863-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-521-82472-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511542824</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351091</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542824</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542824</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511542824</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942121 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9780511542824 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351091 |
oclc_num | 850028306 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (ix, 175 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Macdonald, Ian G. 1928- Verfasser (DE-588)123369258 aut Affine Hecke algebras and orthogonal polynomials I.G. Macdoald Affine Hecke Algebras & Orthogonal Polynomials Cambridge Cambridge University Press 2003 1 Online-Ressource (ix, 175 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 157 Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index In recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey–Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality Hecke algebras Orthogonal polynomials Orthogonale Polynome (DE-588)4172863-4 gnd rswk-swf Hecke-Algebra (DE-588)4159341-8 gnd rswk-swf Hecke-Algebra (DE-588)4159341-8 s Orthogonale Polynome (DE-588)4172863-4 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-521-82472-9 https://doi.org/10.1017/CBO9780511542824 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Macdonald, Ian G. 1928- Affine Hecke algebras and orthogonal polynomials Introduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index Hecke algebras Orthogonal polynomials Orthogonale Polynome (DE-588)4172863-4 gnd Hecke-Algebra (DE-588)4159341-8 gnd |
subject_GND | (DE-588)4172863-4 (DE-588)4159341-8 |
title | Affine Hecke algebras and orthogonal polynomials |
title_alt | Affine Hecke Algebras & Orthogonal Polynomials |
title_auth | Affine Hecke algebras and orthogonal polynomials |
title_exact_search | Affine Hecke algebras and orthogonal polynomials |
title_full | Affine Hecke algebras and orthogonal polynomials I.G. Macdoald |
title_fullStr | Affine Hecke algebras and orthogonal polynomials I.G. Macdoald |
title_full_unstemmed | Affine Hecke algebras and orthogonal polynomials I.G. Macdoald |
title_short | Affine Hecke algebras and orthogonal polynomials |
title_sort | affine hecke algebras and orthogonal polynomials |
topic | Hecke algebras Orthogonal polynomials Orthogonale Polynome (DE-588)4172863-4 gnd Hecke-Algebra (DE-588)4159341-8 gnd |
topic_facet | Hecke algebras Orthogonal polynomials Orthogonale Polynome Hecke-Algebra |
url | https://doi.org/10.1017/CBO9780511542824 |
work_keys_str_mv | AT macdonaldiang affineheckealgebrasandorthogonalpolynomials AT macdonaldiang affineheckealgebrasorthogonalpolynomials |