A universal construction for groups acting freely on real trees:
The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Schriftenreihe: | Cambridge tracts in mathematics
195 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 UBR01 Volltext |
Zusammenfassung: | The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees |
Beschreibung: | 1 Online-Ressource (xiii, 285 Seiten) |
ISBN: | 9781139176064 |
DOI: | 10.1017/CBO9781139176064 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043942097 | ||
003 | DE-604 | ||
005 | 20190313 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2012 |||| o||u| ||||||eng d | ||
020 | |a 9781139176064 |c Online |9 978-1-139-17606-4 | ||
024 | 7 | |a 10.1017/CBO9781139176064 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781139176064 | ||
035 | |a (OCoLC)847033248 | ||
035 | |a (DE-599)BVBBV043942097 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-355 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
100 | 1 | |a Chiswell, Ian |d 1948- |e Verfasser |0 (DE-588)137654995 |4 aut | |
245 | 1 | 0 | |a A universal construction for groups acting freely on real trees |c Ian Chiswell and Thomas Müller |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 Online-Ressource (xiii, 285 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge tracts in mathematics |v 195 | |
505 | 8 | |a 1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices | |
520 | |a The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees | ||
650 | 4 | |a Geometric group theory | |
650 | 4 | |a Trees (Graph theory) | |
700 | 1 | |a Müller, Thomas |d 1957- |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-107-02481-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781139176064 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029351067 | ||
966 | e | |u https://doi.org/10.1017/CBO9781139176064 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139176064 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781139176064 |l UBR01 |p ZDB-20-CBO |q UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176884543520768 |
---|---|
any_adam_object | |
author | Chiswell, Ian 1948- |
author_GND | (DE-588)137654995 |
author_facet | Chiswell, Ian 1948- |
author_role | aut |
author_sort | Chiswell, Ian 1948- |
author_variant | i c ic |
building | Verbundindex |
bvnumber | BV043942097 |
classification_rvk | SK 260 |
collection | ZDB-20-CBO |
contents | 1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices |
ctrlnum | (ZDB-20-CBO)CR9781139176064 (OCoLC)847033248 (DE-599)BVBBV043942097 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781139176064 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03122nmm a2200445zcb4500</leader><controlfield tag="001">BV043942097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139176064</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-139-17606-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781139176064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781139176064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847033248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043942097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chiswell, Ian</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137654995</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A universal construction for groups acting freely on real trees</subfield><subfield code="c">Ian Chiswell and Thomas Müller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 285 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge tracts in mathematics</subfield><subfield code="v">195</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trees (Graph theory)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Thomas</subfield><subfield code="d">1957-</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-107-02481-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781139176064</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029351067</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139176064</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139176064</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781139176064</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBR Einzelkauf (Lückenergänzung CUP Serien 2018)</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043942097 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:17Z |
institution | BVB |
isbn | 9781139176064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029351067 |
oclc_num | 847033248 |
open_access_boolean | |
owner | DE-12 DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-12 DE-92 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xiii, 285 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBR Einzelkauf (Lückenergänzung CUP Serien 2018) |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge tracts in mathematics |
spelling | Chiswell, Ian 1948- Verfasser (DE-588)137654995 aut A universal construction for groups acting freely on real trees Ian Chiswell and Thomas Müller Cambridge Cambridge University Press 2012 1 Online-Ressource (xiii, 285 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge tracts in mathematics 195 1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees Geometric group theory Trees (Graph theory) Müller, Thomas 1957- Sonstige oth Erscheint auch als Druck-Ausgabe 978-1-107-02481-6 https://doi.org/10.1017/CBO9781139176064 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chiswell, Ian 1948- A universal construction for groups acting freely on real trees 1. Introduction -- 2. The group R F (G) -- 3. The R-tree X[g subscript] associated with RF (G) -- 4. Free R-tree actions and universality -- 5. Exponent sums -- 6. Functionality -- 7. Conjugacy of hyperbolic elements -- 8. The centalisers of hyperbolic elements -- 9. Test functions: basic theory and first applications -- 10. Test functions: existence theorem and further applications -- 11. A generation to groupoids -- Appendices Geometric group theory Trees (Graph theory) |
title | A universal construction for groups acting freely on real trees |
title_auth | A universal construction for groups acting freely on real trees |
title_exact_search | A universal construction for groups acting freely on real trees |
title_full | A universal construction for groups acting freely on real trees Ian Chiswell and Thomas Müller |
title_fullStr | A universal construction for groups acting freely on real trees Ian Chiswell and Thomas Müller |
title_full_unstemmed | A universal construction for groups acting freely on real trees Ian Chiswell and Thomas Müller |
title_short | A universal construction for groups acting freely on real trees |
title_sort | a universal construction for groups acting freely on real trees |
topic | Geometric group theory Trees (Graph theory) |
topic_facet | Geometric group theory Trees (Graph theory) |
url | https://doi.org/10.1017/CBO9781139176064 |
work_keys_str_mv | AT chiswellian auniversalconstructionforgroupsactingfreelyonrealtrees AT mullerthomas auniversalconstructionforgroupsactingfreelyonrealtrees |